
Citation: Minoccheri, C.; Alge, O.;

Gryak, J.; Najarian, K.; Derksen, H.

Quadratic Multilinear Discriminant

Analysis for Tensorial Data

Classification. Algorithms 2023, 16,

104. https://doi.org/10.3390/

a16020104

Received: 10 January 2023

Revised: 7 February 2023

Accepted: 10 February 2023

Published: 11 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Quadratic Multilinear Discriminant Analysis for Tensorial
Data Classification
Cristian Minoccheri 1,*, Olivia Alge 1 , Jonathan Gryak 2, Kayvan Najarian 1,3,4,5 and Harm Derksen 6

1 Department of Computational Medicine and Bioinformatics, University of Michigan,
Ann Arbor, MI 48109, USA

2 Computer Science Department, Queen’s College, CUNY, New York, NY 11367, USA
3 Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI 48109, USA
4 Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan,

Ann Arbor, MI 48109, USA
5 Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
6 Mathematics Department, Northeastern University, Boston, MA 02115, USA
* Correspondence: minoc@umich.edu

Abstract: Over the past decades, there has been an increase of attention to adapting machine learning
methods to fully exploit the higher order structure of tensorial data. One problem of great interest is
tensor classification, and in particular the extension of linear discriminant analysis to the multilinear
setting. We propose a novel method for multilinear discriminant analysis that is radically different
from the ones considered so far, and it is the first extension to tensors of quadratic discriminant
analysis. Our proposed approach uses invariant theory to extend the nearest Mahalanobis distance
classifier to the higher-order setting, and to formulate a well-behaved optimization problem. We
extensively test our method on a variety of synthetic data, outperforming previously proposed MDA
techniques. We also show how to leverage multi-lead ECG data by constructing tensors via taut string,
and use our method to classify healthy signals versus unhealthy ones; our method outperforms
state-of-the-art MDA methods, especially after adding significant levels of noise to the signals. Our
approach reached an AUC of 0.95(0.03) on clean signals—where the second best method reached
0.91(0.03)—and an AUC of 0.89(0.03) after adding noise to the signals (with a signal-to-noise-ratio of
−30)—where the second best method reached 0.85(0.05). Our approach is fundamentally different
than previous work in this direction, and proves to be faster, more stable, and more accurate on the
tests we performed.

Keywords: tensors; multilinear discriminant analysis; quadratic discriminant analysis; classification

1. Introduction

Data often has a higher-order structure, and leveraging this structure can significantly
improve the results of the problem at hand. However, many machine learning methods do
not naturally extend to tensors in a way that account for this tensorial structure. In the case
of classification problems, for example, there has been tremendous interest in extending
linear discriminant analysis (LDA) to the tensorial setting. LDA is a classical and versatile
method for classification, but is typically not well suited for data in matrix or in tensor
forms (higher-order matrices). These types of data, with a higher order structure, are very
common nowadays and there has been a lot of interest in developing machine learning
methods that can leverage this structure. Natural examples of data in matrix form are
black-and-white images and multi-lead electrocardiogram (ECG) readings. Similarly, color
images, videos, and data in matrix forms that vary with time are examples of third order
tensors. Classifying matrix data with LDA (or other vector-based classical machine learn-
ing algorithms) requires the data to be vectorized first; this often leads to large vectors,
but—perhaps more importantly—also causes the loss of important information such as

Algorithms 2023, 16, 104. https://doi.org/10.3390/a16020104 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16020104
https://doi.org/10.3390/a16020104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1029-6664
https://doi.org/10.3390/a16020104
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16020104?type=check_update&version=2


Algorithms 2023, 16, 104 2 of 20

spatial locality. Furthermore, vectorization ignores the multilinear structure of the data.
For example, a matrix of rank one depends on fewer parameters than a full-rank matrix.
On top of that, matrices from different classes might have different ranks, so using the
multilinear structure might help in the classification task. These considerations apply
even more strongly to higher-order data, and tensor techniques have been successfully
applied in a variety of classification settings such as images (see [1]), electroencephalogram
(EEG) data (see [2,3]), and ECG signals (see [4,5]); for a recent survey of applications to
clinical informatics, see [6]. On the other hand, tensors of order 3 or more enjoy many good
properties (e.g., unique decompositions), so that sometimes it is in fact advantageous to
reshape data given in form of vectors or matrices into data of higher order [7].

For these reasons, there has been intensive work in recent years on extending LDA
to multilinear discriminant analysis (MDA) to leverage the multilinear structure of the
data. Using the Fisher criterion for LDA, given data points x1, . . . , xm ∈ Rn belonging to
two classes C1, C2 of size m1, m2, one seeks the optimal projection to a hyperplane that
maximizes distances between different classes (measured by the between-class scatter
matrix) and minimizes distances within the same class (measured by the within-class
scatter matrix). If µ1, µ2 are the means for each class and µ is the overall mean, one can
define the scatter matrix for class i as the covariance matrix for that class,

Si =
1

mi
∑
j∈Ci

(xj − µi)(xj − µi)
t,

the within class scatter matrix as SW = S1 + S2, and the between class scatter matrix as

SB = m1(µ1 − µ)(µ1 − µ)
t
+m2(µ2 − µ)(µ2 − µ)

t.

The hyperplane f (x) = wtx to project onto is then obtained by maximizing

J(w) =
wtSBw
wtSWw

.

In an attempt to extend Fisher’s approach, most MDA methods seek to project tensor
data to a lower dimensional vector or tensor space by similarly maximizing distances
between classes while simultaneously minimizing distances within the same class. Early
work [8–10] considered the case of matrix data. After that, many methods have been
proposed for tensorial data, usually introducing between-class and within-class scatter
matrices for each mode. Different methods consider various functions to optimize (like the
scatter-ratio criterion or the scatter-difference criterion from Fisher discriminant analysis),
and propose different algorithms to optimize them. Discriminant analysis with tensor
representation (DATER) [11], generalized eigenvalue discriminant analysis with tensor rep-
resentation (DATEReig) [12] and constrained multilinear discriminant analysis (CMDA) [1]
seek to maximize the scatter-ratio criterion iteratively by alternating through each mode;
direct general tensor discriminant analysis (DGTDA) [1] seeks to maximize the scatter
difference directly. The methods proposed in [3], such as manifold Tucker discriminant
analysis (ManTDA) and manifold PARAFAC discriminant analysis (ManPDA), seek to
optimize simultaneously, in all modes, the projection matrices over a product of Stiefel
manifolds with respect to the scatter-ratio criterion or its simplified trace ratio objective.

However, the optimization problems considered so far are ill-behaved in general due
to the existence of local optima. Because of this, several iterations with different random
initializations are sometimes necessary to try to avoid such local optima. However, this
adds to the computational cost of the method, while still having no guarantee the computed
solution is a global optimum. Furthermore, the performance of these methods drastically
depends on the choice of the dimensions of the space to project onto. For example, a tensor
of size 10× 10× 10 can be projected onto a tensor of size p × q × r with 1 ≤ p, q, r ≤ 10. This
amounts to, in principle, 1000 possibilities. In practice, one usually chooses all dimensions



Algorithms 2023, 16, 104 3 of 20

to be equal, but if the size of tensor varies greatly from one mode to the other, this option
is not viable. Therefore these methods include the additional cost of determining the best
dimensions to project onto. We will see that our proposed method does not share these
issues, since instead of projecting onto a lower dimensional subspace we look for a change
of coordinates in the given space.

In this paper, we take a radically different approach: Kempf–Ness multilinear dis-
criminant analysis (KNMDA). Starting from the interpretation of classic LDA as a nearest
Mahalanobis distance classifier, we reformulate LDA by means of invariant theory, which
allows us to extend it naturally to structured data in the form of a well-behaved optimiza-
tion problem. In fact, our framework allows us to also reformulate quadratic discriminant
analysis (QDA) by means of invariant theory, and to extend QDA to tensorial data for the
first time.

Invariant theory, originating in 19th century and modernized by David Hilbert, can
be applied to many areas of computer science, such as coding theory [13] and computer
vision [14,15]. Some newer applications more relevant to this study are those related
to scaling algorithms [16], matrix and tensor completion [17], and maximum likelihood
estimation [18]. In invariant theory, one studies the linear action of groups on vector spaces
and polynomials that are invariant under these group symmetries.

A major tool of invariant theory is the Kempf–Ness theorem [19]. Roughly speaking,
the theorem states that if an orbit has a point that is closest to the origin, then this point
is essentially unique. This translates to a certain optimization problem having a unique
optimal solution. This result of Kempf–Ness theory provides a natural extension of LDA to
the higher order setting.

LDA is related to the Mahalanobis distance: it can be interpreted as a k-means algo-
rithm, where we classify a data point based on the smallest distance from the mean of
the training data of each class, and the distance is given by the Mahalanobis one. In turn,
the Mahalanobis distance of a point x from the mean of the training data x̄ can be thought
of as Euclidean distance after a suitable change of coordinates, namely Σ−1/2(x − x̄), where
Σ is the sample covariance matrix across the entire training dataset. Therefore, we can
interpret LDA as a k-means algorithm in a suitable coordinate system. By allowing differ-
ent sample covariance matrices for each class—i.e., different sets of coordinates for each
class—we can similarly interpret QDA in this framework. If X is a matrix (or tensor),
applying a change of coordinates after vectorization might radically alter the structure of
X . This can be especially nefarious when the data is sparse, e.g., it has low rank or few
non-zero entries. To solve this issue, we can apply a different change of coordinates in
each mode of X , i.e., multiply by an invertible matrix in each mode. This strategy would
preserve the rank. To further preserve the structure of the data, one might want to consider
coordinate changes that preserve volumes; therefore we will consider invertible matrices
with the determinant 1. The restriction to matrices with determinant 1 does not have a
large impact on the method, as it amounts to rescaling an invertible matrix to make its
determinant equal to 1. The question now is how to appropriately choose such a change
of coordinates. The Kempf–Ness theory gives us a choice of coordinates by solving a
well-behaved optimization problem which reduces to Mahalanobis distance in the case of
vectorial data.

The proposed method was tested on synthetic data of several types, some of which
have already appeared in the literature [3,20]. The results demonstrate that there are
classes of data on which the proposed method achieves significantly better results than
other existing methods. The method was also employed to classify tensors extracted
from ECG signals. The analysis of ECG recordings with tensor-based approaches has
proven to be very fruitful in a variety of settings, such as the detection and localization of
myocardial infarction, irregular heartbeat classification, ECG data compression, detection
and quantification of T-wave alternans, and analysis of changes in heartbeat morphology
(see [4] for an overview). In our experiments, we consider third-order tensors extracted
from multi-lead ECG signals from the publicly available PhysioNet PTB dataset [21]. There



Algorithms 2023, 16, 104 4 of 20

are several ways of constructing tensors from ECG data; here we follow the approach
of [22] by extracting features from taut-string approximations of the signals. In [22], feature
vectors were extracted from ECG signals via taut string as well as other methods, and then
classification was performed with standard machine learning techniques, among which
linear support vector machine (SVM) performed best. We found that the same applies to
our experiments, which is why in the comparisons we also include the results of an SVM
classifier on the vectorized tensors. We believe that the method by which we construct
third-order tensors via taut string from multi-lead ECG signals (which we have not found
anywhere else) is also a potentially interesting new way of extracting tensors from signals.

2. Notation and Background Material

A tensor is a multi-way extension of a matrix whose entries depend on 3 or more
indices. For example, entries of a 3-way tensor (or tensor with 3 modes) X ∈ Rn1×n2×n3

depend on 3 indices, xijk, where i = 1, . . . , n1, j = 1, . . . , n2, and k = 1, . . . , n3. We will limit
our exposition to the case of three-way tensors, but everything extends in the obvious way
to four or more modes (as well as to matrices, with only two modes). We refer the reader
to [23,24] for an extensive overview of tensors and their applications.

Working with tensors, it is often convenient to break them up into vectors and matrices.
Given a tensor X , fixing two of the indices, we obtain fibers (which are vectors) of the
tensor in a given mode; fixing one of the indices, we obtain slices (which are matrices) of the
tensor in a given mode. One can flatten (or matricize) a three-way tensor in three different
ways, by juxtaposing slices in the chosen mode; X(n) will denote the mode-n flattening
of X . For example, the mode-1 flattening of X is a matrix of size n1 × n2n3, which can be
thought of as arranging mode-1 fibers as columns of an n1 × n2n3 matrix.

We will be interested in two types of products. The ni-mode matrix-tensor product
is a way of multiplying an m × ni matrix A by a tensor X ∈ Rn1×n2×n3 , and consists of
multiplying each mode-i fiber of X by A. Equivalently, this amounts to multiplying A by
the mode-i flattening X(i). This product is denoted A ×i X , and its result is another tensor,
although of different size: for example, A×1 X is a tensor in Rm×n2×n3 . Another product we
are interested in is the outer product of vectors: if u, v, w are vectors of lengths n1, n2, n3,
their outer product (or tensor product) u ○ v ○w is a 3-way tensor X ∈ Rn1×n2×n3 with entries
defined as xijk = uivjwk. A tensor of the form u ○ v ○w is said to have rank 1.

A fundamental tool in studying matrices is the singular value decomposition (SVD).
This decomposition does not generalize to tensors completely (we cannot retain both a
diagonal core and orthogonal side matrices) but it generalizes in two main ways: the
danonical polyadic (CP) decomposition and the Tucker decomposition (as well as many
variants of these).

A CP decomposition of a tensor X is a generalization of SVD that keeps a diagonal
core, and amounts to writing the tensor as a minimum-length sum of tensors of rank 1:

X =
r
∑
i=1

σiai ○ bi ○ ci = [σ1, . . . , σr; A, B, C]. (1)

Such a minimum r is called the rank of the tensor (which is a generalization of the
rank of a matrix) and it is unfortunately NP-hard to compute [25–27]. This decomposition
is often unique (up to permuting the indices and rescaling the vectors), and therefore the
vectors ai, bi, ci contain useful features to further study the tensorX , even though in practice,
one only computes an approximation of this decomposition. The matrices A = [a1, . . . , ar],
B = [b1, . . . , br], and C = [c1, . . . , cr] are often called factor matrices of X .

Another generalization of the SVD of a matrix is the higher-order singular value
decomposition (HOSVD), which preserves the orthogonality of the factor matrices but does
not have a diagonal core:

X = ∑
i,j,k

gijkai ○ bj ○ ck = A ×1 B ×2 C ×3 G



Algorithms 2023, 16, 104 5 of 20

with A, B, C orthogonal. The dimensions of the core G can be chosen to be smaller than those
of X , making this decomposition useful for dimension reduction (among other things).

The main result from invariant theory we will use is the Kempf–Ness theorem [19].
Over the real numbers, it first appeared in ([28], Theorem 4.3). We will describe the general
setup of [28], which is technical, but note that it applies to some concrete situations of
interest. Let GLn = GLn(R) (resp. GLn(C)) be the group of invertible n × n matrices with
real (resp. complex) entries. Suppose that GC is a reductive, Zariski closed subgroup of
GLn(C) that is closed under complex conjugation. Let G ⊆ GC ∩GLn(R) be a subgroup
that contains the connected component of the identity in GC ∩GLn(R). The orbit G ⋅ v of a
vector v ∈ Rn with respect to G is defined as the set of vectors g ⋅ v as g varies in the group
G. Finally, define K = G ∩On, where On is the group of orthogonal n × n matrices. This
setup applies to the following situations that are of interest to us:

• G = SLn, the group of matrices with determinant 1 and K = SOn, the special orthogonal
group acting on Rn in the usual way;

• The group G = Tn of n × n diagonal matrices of determinant 1 with positive diagonal
entries, and K = {In} is the trivial group;

• The group G = SLn1 × SLn2 × SLn3 acting on the space Rn1×n2×n3 of tensors of size
n1 × n2 × n3 and K = SOn1 × SOn2 × SOn3 , where n = n1n2n3;

• The same as the previous example, but where G and K acts on m-tuples of n1 × n2 × n3
tensors, or equivalently, on n1 × n2 × n3 ×m tensors (and n = n1n2n3m).

We can now state the real Kempf–Ness theorem:

Theorem 1 (Kempf–Ness). Suppose that G ⊆ GLn(R) be as in the setup above, and v ∈ Rn is
nonzero. The Euclidean norm function v ↦ ∥v∥2 has a critical point on the orbit G ⋅ v if and only if
the orbit is closed. If a critical point exists, then it is an absolute minimum and the set of critical
points is unique up to the action of K, i.e., the set of critical points is a unique K-orbit.

3. Algorithm

Before we apply Kempf–Ness theory for tensor classification, let us discuss an easier
situation where we are not using any tensor structure. We consider a sequence of vectors
x1, . . . , xm ∈ Rn and the action of a subgroup G ⊆ GLn by multiplication. We combine the
vectors into a matrix X = [x1 x2 ⋯ xm]. We will see that in the case of centered vector
data, simultaneously minimizing the norm of all vectors with respect to the SLn-action
coincides with considering the Mahalanobis distance (up to a constant). The proof of the
next Proposition can be found in Appendix A.

Proposition 1 (Critical points for SL-action). Let X ∈ Rn×m of rank n, with n < m. Suppose that
X = USVt is a (truncated) singular value decomposition with U, V ∈ SOn and S a diagonal matrix
whose diagonal entries are the singular values σ1, . . . , σn. Let σ̄ = (σ1σ2⋯σn)

1/n be the geometric
mean. If

D ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ̄
σ1

⋱
σ̄
σn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= σS−1

and A ∶= DUt, then AX is a critical point for the norm function, and therefore an absolute minimum
point.

If the mean of the vectors x1, x2, . . . , xm is zero and X = [x1 x2 ⋯ xm] ∈ Rn×m, then we
have XXt = mΣ where Σ is the covariance matrix. Therefore, we have

At A = UD2Ut
= σ2US−2Ut

= σ2
(XXt

)
−1

= σ2

m Σ−1. (2)



Algorithms 2023, 16, 104 6 of 20

The Mahalanobis distance between two vectors x and y is

√

(x − y)tΣ−1(x − y) =
√

m
σ

∥A(x − y)∥.

so that (up to a scalar) A gives us the Mahalanobis distance Σ−1. Multiplying with A can
be thought of as a normalization, so that the covariance matrix of Ax1, Ax2, . . . , Axm is the
identity, up to a scalar.

If X has a rank less than n, we can first “regularize” X by replacing it with [X ∣ εIn] for
some chosen ε > 0 to ensure that the rank is n, and then apply the previous proposition.
One can think of ε as a regularization parameter that can be used even if the rank of the
matrix is already n. Experimental results (as described in Section 4) suggest, on the other
hand, that the results are often not affected by the choice of ε.

QDA is an algorithm for binary classification of vector data that uses the Mahalanobis
distance as follows. Suppose that there are two classes. In the training data, we have
vectors x1, x2, . . . , xm1 ∈ Rn that belong to the first class and training data y1, y2, . . . , ym2 ∈ Rn

that belong to the second class. Let x and y be the means of the x’s and the y’s, respectively.
Let Σ1 and Σ2 be the covariance matrices of the x’s and y’s. To classify a given vector z,
we compare the Σ1-Mahalanobis distance of z to x with the Σ2-Mahalanobis distance of z
to y. Our goal is to generalize this approach to tensor data, and replace the Mahalanobis
distance with a distance that respects the tensor structure.

Instead of the action of SLn, we can also consider the action of Tn, the group of diagonal
matrices with positive diagonal entries and determinant 1. We have the following result,
the proof of which can be found in Appendix A.

Proposition 2 (Critical points for T-action). Suppose that X ∈ Rn×m has no zero rows. Let
σ1, . . . , σn be the Euclidean lengths of the rows of X, and let σ̄ = (σ1σ2⋯σn)

1/n be the geometric
mean. If

A ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ̄
σ1

⋱
σ̄
σn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

then AX is a critical point for the norm function, and therefore an absolute minimum point.

Suppose that the means of the rows of X = [x1 x2 ⋯ xm] are zero. Thus, all features of
the vector data have mean 0. Multiplying with A has the effect that all the features (rows)
are normalized to have the same standard deviation.

If X has a zero row, we can first “regularize” X by replacing it with [X ∣ ε1t] for some
chosen ε > 0, where 1 = (1, . . . , 1) is a row vector with n entries equal to 1.

Instead of vector data, we will now consider tensor data. The techniques using
Kempf–Ness theory are valid for tensors of any order, but we will work with 3-way tensors.
Suppose that X1,X2, . . . ,Xm ∈ Rn1×n2×n3 are tensors. We could normalize the data with
an arbitrary change of coordinates in SLn, where n = n1n2n3, but this could change the
tensor structure of the tensor data. For example, the tensor rank is not preserved under
arbitrary coordinate changes in SLn. Instead, we will consider the action of the a group
G = H1 × H2 × H3 on Rn1×n2×n3 where for each i, Hi is equal to SLni or Tni . An element
(A, B, C) ∈ G in the group acts on a tensor T ∈ Rn1×n2×n3 by multiplying A, B and C with T
in the first, second and third mode, respectively:

(A, B, C) ⋅ T = A ×1 B ×2 C ×3 T .

for G and T fixed, the G-orbit G ⋅ T of T is the set of tensors of the form (A, B, C) ⋅ T as A,
B and C vary.

Consider the binary classification problem with training data given by three-way
tensors {Xi}

m1
i=1 of size n1 × n2 × n3 in class 1, and {Yi}

m2
i=1 of the same size in class 2. Given

a new test tensor Z from one of the two classes above, our goal is to identify the class



Algorithms 2023, 16, 104 7 of 20

to which it belongs. Though we have restricted our discussion to a binary classification
problem for simplicity, our algorithm extends naturally to cases with more than two classes.

Working with Theorem 1, it can be hard in general to check the existence of a critical
point, or to find one if it exists. The optimization problem we wish to solve is to find
matrices (A1, B1, C1) ∈ G such that

N1

∑
i=1

∥(A1, B1, C1) ⋅ (Xi − X̄ )∥
2

is minimal for the first class (where X̄ is the mean of the tensors in the first class), and simi-
larly matrices (A2, B2, C2) ∈ G for the second class. This optimization problem can be formu-
lated in terms of Kempf–Ness theory. Denote by T the four-way tensor obtained by concate-
nating along the fourth mode all (centered) tensorsXi, and denote by K = H1 × H2 × H3 × IN1
the group acting as H1 × H2 × H3 on the first 3 modes, and trivially (via the identity ma-
trix) on the fourth mode. This optimization problem can then be equivalently stated as
finding the minimum of the norm over the orbit K ⋅ T . By Theorem 1 (or, more precisely,
its version for fourth order tensors) it then follows that if there is a critical point, our
problem has a unique minimum. In general, we will not be able to determine whether a
critical point exists, but experimentally it will turn out to be the case if we adopt a suitable
regularization technique.

While the above optimization problem is difficult to solve in general, it has an explicit
solution in the case of vectors x1, . . . , xm ∈ Rn, and in this case we would recover the
covariance matrix for each class. In this sense, the optimization problem we suggest can
perhaps be also thought of as an extension of QDA to higher order data. Our method
to estimate a solution is an alternating algorithm that iteratively keeps two of the three
matrices fixed, and computes the third one. To deal with several tensors at once, we
iteratively concatenate their flattenings along each of the modes.

We can now describe the algorithm we use on each class to obtain a new set of
coordinates. Let X be the four-way tensor obtained by concatenating along the fourth
mode all (centered) tensors X1,X2, . . . ,Xm in class 1, and consider its matricizations X(1),
X(2), and X(3) along the first, second, and third mode, respectively. Once a group G has
been chosen (i.e., which group action to use in each mode), the problem to be solved is

arg min
(A,B,C)

(
m
∑
i=1

∥(A, B, C) ⋅Xi∥
2
) = arg min

(A,B,C)
∥(A, B, C, I) ⋅X ∥

2.

The challenge to solving the above problem is that the previous propositions do not
readily extend to a method of minimizing in more than one mode simultaneously. On the
other hand, we know how to minimize the norm in a given mode exactly. For this reason,
we adopt an alternating algorithm, which keeps two of the matrices A, B and C fixed at
each step, and minimizes the norm with respect to the third one. If B and C are fixed and
we call X B,C ∶= (I, B, C) ⋅X the tensor obtained from X after multiplying by B snd C in the
second and third mode, respectively, the problem

arg min
A

(
m
∑
i=1

∥(A, B, C) ⋅Xi∥
2
)

is equivalent to
arg min

A
∥A ⋅X

B,C
(1) ∥

2,

which can be solved using either Proposition 1 or Proposition 2 (depending on which group
we chose to act on the first mode).

Similarly,

arg min
B

(
m
∑
i=1

∥(A, B, C) ⋅Xi∥
2
),



Algorithms 2023, 16, 104 8 of 20

arg min
C

(
m
∑
i=1

∥(A, B, C) ⋅Xi∥
2
)

are equivalent to
arg min

B
∥B ⋅X A,C

(2) ∥
2,

arg min
C

∥C ⋅X
A,B
(3) ∥

2,

where we defined X A,C ∶= (A, I, C) ⋅X and X A,B ∶= (A, B, I) ⋅X .
We keep iterating until each minimization reduces the norm beyond a given tolerance

level, or a maximum chosen number of iterations is reached. As we will see in the experi-
ments, this choice does not typically affect the outcome of the classification. Algorithm 1
describes this process. Figure 1 is a schematic graphical representation of Algorithm 1
in the case of matrix data (instead of third order tensors) for drawing ease. While we are
not guaranteed the existence of a minimum, by Theorem 1 we know that if it exists, it is
unique. Experimentally, it turns out that if we apply regularization at each iterative step,
a minimum will exist in most cases.

Algorithm 1 New sets of coordinates.
Input: (Centered) Training data {Xi}

m
i=1 from one class.

Output: Change of coordinates (A, B, C) ∈ H1 × H2 × H3.
1 for i = 1, . . . , m do
2 X = cat(4,Xi);

3 newMin1 = ∥X(1)∥; newMin2 = ∥X(2)∥; newMin3 = ∥X(3)∥;
4 A = In1 ; B = In2 ; C = In3 ;
5 while (oldMini − newMini)/mini) > tol for i = 1, 2, 3 and iterations < max do
6 A′ = arg minA ∥A ⋅X(1)∥;
7 X = A′ ×1 X ; oldMin1 = newMin1; newMin1 = ∥X ∥; A = A′ ⋅ A;
8 B′ = arg minB ∥B ⋅X(2)∥;
9 X = B′ ×2 X ; oldMin2 = newMin2; newMin2 = ∥X ∥; B = B′ ⋅ B;

10 C′ = arg minC ∥C ⋅X(3)∥;
11 X = C′ ×3 X ; oldMin3 = newMin3; newMin3 = ∥X ∥; C = C′ ⋅C;

Average matrix 

Training data matrices (stacked 
along the third mode)

Centered data matrices

Transformed data matrices 
via Kempf-Ness theory

Figure 1. Graphical representation of Algorithm 1 in the case of matrix data.



Algorithms 2023, 16, 104 9 of 20

We can think of the group action via (A, B, C) as a change of coordinates for centered
tensors in a given class. Therefore to classify a new tensor Z we apply a k-means algorithm,
computing the distances d1 and d2 from the means of the two classes in the new coordinates.
The process is described in Algorithm 2, which is our KNMDA algorithm. Figure 2 is a
schematic graphical representation of Algorithm 2 in the case of matrix data (instead of
third-order tensors) for drawing ease.

Algorithm 2 Classification via KNMDA.

Data: Training data {Xi}
m1
i=1, {Yj}

m2
j=1 from two classes.

Input: Tensor Z to classify.
Output: Class to which Z belongs.

1 X̄ = 1
m1

(∑
m1
i=1Xi);

2 Ȳ = 1
m2

(∑
m2
i=j Yj);

3 for i = 1, . . . , m1 do
4 Xi = Xi − X̄ ;

5 for j = 1, . . . , m2 do
6 Yj = Yj − Ȳ ;

7 Find new sets of coordinates (via Algorithm 1) (A1, B1, C1),
(A2, B2, C2) ∈ H1 × H2 × H3 for each class.

8 d1 = ∥(A1, B1, C1) ⋅ (Z − X̄ )∥;
9 d2 = ∥(A2, B2, C2) ⋅ (Z − Ȳ)∥;

10 if d1 < d2 then
11 Assign Z to class 1.

12 else if d2 < d1 then
13 Assign Z to class 2.

New matrix Z to be 
classified

Matrix Z in the coordinates 
defined by class 2

Distance from class 1 
used for classification

Matrix Z in the coordinates 
defined by class 1

Distance from class 2 
used for classification

Figure 2. Graphical representation of Algorithm 2 in the case of matrix data.

One could also use this algorithm to obtain two similarity scores s1 and s2, between 0
and 1, that represent how close Z is to each class, by defining

si = 1−
di

d1 + d2
.



Algorithms 2023, 16, 104 10 of 20

To make an overall summary, given a training set of tensors (of any order), for each
class we find the average tensor and center the data in that class. We then apply the
Kempf–Ness Theorem to find optimal coordinates for a given class. Given a new tensor to
be classified, we compute a distance from each class by subtracting the class average and
applying the class change of coordinates. The smallest distance will identify the class to
which the tensor is assigned.

4. Experimental Results

We compare our method with other MDA methods as well as classical machine
learning methods. There are many MDA methods that have been proposed: we compare
ours to the ones that seemed to perform the best according to our experiments as well as the
results reported in [3], implemented with the code available from [3]. The code uses [29]
for tensor operations and [30] for manifold optimization on Stiefel manifolds as in [31].
The implementation of our algorithm uses Tensor Toolbox [32].

The methods we compare our results to are DATER [11], DATEReig [12], CMDA [1],
and ManTDA, based on manifold optimization proposed in [3]. The performance of higher-
order discriminant analysis (HODA) [33] and DGTDA [1] were not competitive when
compared to the other MDA methods (consistent with the results from [3]), therefore they
are not reported. Other manifold-based methods from [3] performed similarly to ManTDA,
or worse. The vector-based methods consist of classic linear LDA and linear SVM (as
implemented in MATLAB), which we apply to the vectorized tensors.

4.1. Synthetic Data

We considered three different kinds of synthetic data. The first one draws inspiration
from the CP decomposition of a tensor: we consider a class to be determined by the same
factor matrices, and tensors in the class are obtained from those fixed factor matrices by
adding noise both to the factor matrices and to the tensor obtained from the CP construct.
The second type of data is generated from the HOSVD form of a tensor, in a way similar to
the synthetic data considered in [3] (except that in [3] they work with matrix data, and we
modified their code to construct third-order tensors). The third type of data is the same as
analyzed in [20] and is related to the notion of congruence sets. These synthetic datasets
aim at covering a variety of structures that real tensors might have. CP and Tucker/HOSVD
are fundamental decompositions used to analyze tensors and extract features from them for
further analysis; this means that these structures capture essential properties of tensorial
data, and therefore it makes sense—in a classification problem—for different classes to
differ at this structural level.

4.1.1. CP Based Data

The motivation for these experiments lies in the fact that if a tensor has a unique CP
decomposition, the factor matrices are essentially unique and contain important features
of the tensor. We interpret tensors from the same class as having the same factor matrices,
with noise added to each factor matrix and to the resulting tensor for every sample in
the same class. For class 1, we choose a rank r1, and we generate 3 matrices A, B, and C
with r1 columns and random normal entries that we keep fixed. Each tensor in class 1 is
constructed by adding noise to A, B, and C, computing the outer products of the columns
of A, B, and C, and adding noise again:

Xi = [A + ηÃi, B + ηB̃i, C + ηC̃i]+ ρD̃i.

here, Ãi, B̃i, C̃i, D̃i are random matrices whose entries are independent and have a standard
normal distribution.

For class 2, we generate factor matrices F, G and H with r2 columns and random
normal entries, and we construct tensors as before:

Yi = [F + ηF̃i, G + ηG̃i, H + ηH̃i]+ ρẼi.



Algorithms 2023, 16, 104 11 of 20

Tables 1 and 2 report average area under the receiver operating characteristic curve
(AUC) over 20 runs, where 40 samples were used for training and 200 for testing. For KN-
MDA, SL-action was used in all modes, with imposed regularization with parameter ε = 1
and a maximum of 10 iterations. For DATER, DATEReig, and CMDA, we projected onto
the space R3×3×3 (i.e., we chose the reduced dimension to be 3), which gave the best perfor-
mance among all tensor spaces of equal size in each mode. We do not report the results
of manifold-based MDA methods from [3], since they performed worse than the reported
MDA methods.

Table 1. CP data with r1 = 3, r2 = 3, size 10× 10× 10. Different columns report AUC (and standard
deviation) for different levels of noise. The bold values represent the best performance for each
column.

Method η = 1, ρ = 1 η = 2, ρ = 1 η = 3, ρ = 1

KNMDA 1.00 (0.00) 0.75 (0.05) 0.60 (0.04)
DATEReig 0.92 (0.04) 0.52 (0.06) 0.52 (0.04)

DATER 0.89 (0.07) 0.51 (0.03) 0.52 (0.05)
CMDA 0.93 (0.04) 0.53 (0.06) 0.51 (0.05)

SVM 1.00 (0.00) 0.61 (0.04) 0.53 (0.05)
LDA 0.95 (0.02) 0.57 (0.03) 0.52 (0.05)

Table 2. CP data with r1 = 3, r2 = 3, size 5 × 5 × 5. Different columns report AUC (and standard
deviation) for different levels of noise. The bold values represent the best performance for each
column.

Method η = 1, ρ = 3 η = 1, ρ = 5 η = 1, ρ = 7

KNMDA 0.92 (0.02) 0.82 (0.03) 0.73 (0.05)
DATEReig 0.68 (0.07) 0.62 (0.06) 0.59 (0.05)

DATER 0.65 (0.07) 0.61 (0.07) 0.59 (0.06)
CMDA 0.70 (0.05) 0.62 (0.05) 0.60 (0.06)

SVM 0.80 (0.04) 0.70 (0.05) 0.66 (0.05)
LDA 0.69 (0.04) 0.62 (0.04) 0.60 (0.05)

4.1.2. HOSVD Based Data

In this experiment, we generate three-way tensors by creating the building blocks
of the HOSVD structure similarly to the way in which matrices are created in [3] for
testing: in fact, we follow the same construction but adapted their code to create third-order
tensors. We generate two distinct cores G1 and G2 of size 3 × 3 × 3 with standard normal
random entries for two classes, as well as matrices U1, U2, U3, V1, V2, V3 of size 10× 3 with
orthogonal columns. We then generate observations for each class by adding noise to these
cores, according to the following structure:

Xi = U1 ×1 U2 ×2 U3 ×3 (σG1 + ηNi)+ 25(V1 ×1 V2 ×2 V3 ×3 Ei),

Yi = U1 ×1 U2 ×2 U3 ×3 (σG2 + ηNi)+ 25(V1 ×1 V2 ×2 V3 ×3 Ei)

whereNi and Ei are tensors of size 3×3×3 with standard normal random entries. The higher
the value of σ and the lower the value of η, the easier it is to discriminate between classes.
Table 3 reports AUCs for three decreasing levels of discriminability (the same three levels
as in [3]); for each level of noise, we computed averages over 10 iterations using 40 tensors
for training and 100 for testing.

For KNMDA, the SL-action was used in all modes, with imposed regularization with
parameter ε = 1 and a maximum of 10 iterations. For DATER, DATEReig, CMDA, ManTDA,
and ManPDA were projected onto the space R3×3×3, which is the true dimension of the
underlying cores and therefore gives the best results.



Algorithms 2023, 16, 104 12 of 20

Table 3. HOSVD data. Different columns report AUC (and standard deviation) for decreasing levels
of discriminability of the classes. The bold values represent the best performance for each column.

Method σ = 1, η = 1 σ = 0.5, η =
√

3 σ = 0.25, η =
√

3

KNMDA 1.00 (0.00) 0.87 (0.03) 0.58 (0.06)
DATEReig 0.78 (0.10) 0.62 (0.04) 0.55 (0.08)

DATER 0.87 (0.14) 0.64 (0.08) 0.53 (0.06)
CMDA 0.99 (0.02) 0.73 (0.07) 0.55 (0.06)

SVM 0.58 (0.13) 0.52 (0.03) 0.48 (0.05)
LDA 0.89 (0.05) 0.62 (0.07) 0.53 (0.04)

ManTDA 0.90 (0.06) 0.62 (0.07) 0.56 (0.06)
ManPDA 1.00 (0.01) 0.72 (0.05) 0.56 (0.06)

4.1.3. Classification of Sparsity Patterns

Inspired by [20], we considered another kind of data. For fixed factor matrices A, B
and C, we say that the congruence class determined by them is the set of all tensors of
the form X = ∑

r
i=1 σiai ○ bi ○ ci for any σ1, . . . , σr ∈ R. It can be shown that congruence sets

arising from distinct factor matrices do not intersect ([20], Remark 1). We can therefore
consider the natural classification problem that consists of discriminating between different
congruence classes.

Let ej be the j-th canonical basis vector of RI . Let Lj be ej ○ ej ○ ej. We generate tensors
according to two classes: Xi = xiL1 + yiL2 + ziL3 + Ei and Yj = xjL4 + yjL5 + zjL6 + Ej, where
xi, yi and zi are i.i.d. from a zero-mean Gaussian distribution with variance 1− β2, and the
entries of the noise tensors Ei are i.i.d. from a zero-mean Gaussian distribution with
variance β2.

Table 4 reports the average AUC over 20 runs for several methods, where 40 samples
in each class were used for training and 100 in each class for testing. In KNMDA, SL-
action was used in all modes, with imposed regularization with parameter ε = 1 and a
maximum of 10 iterations. For DATER, DATEReig and CMDA we projected onto the space
R3×3×3 (other choices of tensor spaces of equal size in each mode performed equivalently).
ManTDA similarly performed at the level of a random guess.

Table 4. Classification of Sparsity Patterns. The bold values represent the best performance for each
column.

Method β2
= 0.05 β2

= 0.15 β2
= 0.25

KNMDA 1.00 (0.00) 0.99 (0.01) 0.76 (0.05)
DATEReig 0.51 (0.06) 0.48 (0.04) 0.49 (0.06)

DATER 0.51 (0.06) 0.49 (0.06) 0.52 (0.04)
CMDA 0.50 (0.06) 0.50 (0.05) 0.51 (0.05)

SVM 0.51 (0.06) 0.50 (0.06) 0.50 (0.06)
LDA 0.50 (0.06) 0.52 (0.06) 0.49 (0.06)

It is worth noting that our method seems especially suitable for this type of classifica-
tion problem, even with very few training samples. In [20], this experiment is used to test a
kernel designed for tensorial data, which improves the classification results compared to
kernels designed for vectorial data. The authors reported an AUC of 0.86 (0.04) with only
M = 10 training samples, whereas our method already achieves perfect classification with
M = 6 training samples, as Table 5 shows.

Table 5. Mean AUC (and standard deviation) of KNMDA for sparsity patterns as the number of
training samples M increases.

M M = 2 M = 4 M = 6 M = 8 M = 10

AUC 0.56 (0.06) 0.98 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)



Algorithms 2023, 16, 104 13 of 20

4.2. Tensors from ECG Data

We further tested our method on tensors we constructed from ECG signals in the
PTB Diagnostic ECG Database [34] publicly available on PhysioNet [21]. Tensor-based
techniques have proven to be especially effective on ECG data, and have been success-
fully applied in a variety of settings: data compression, irregular heartbeat classification,
detection and quantification of T-wave alternans, and analysis of changes in heartbeat
morphology (all surveyed in [4]). In classification problems using features extracted from
ECG signals via tensor methods, linear SVM has proven to perform well. For example,
in [5] linear SVM is successful in detecting and localizing myocardial infarction.

Here we consider a classification problem of third-order tensors of features extracted
via taut string from multi-lead ECG recordings. The taut-string method is used to approx-
imate the signals with piecewise linear estimates, from which one can extract features
such as mean, standard deviation, skewness, and kurtosis. This approach on ECG signals
has already been successfully applied in [22], where feature vectors were classified using
linear SVM (which performed best among the vector-based machine learning techniques
considered).

Here we construct third-order tensors using the taut-string approach, and classify the
tensors with MDA techniques, as well as linear SVM. We first briefly review the method for
constructing the taut-string piecewise linear approximation of an ECG signal. For a discrete
time signal z = (z0, z1, . . . , zn) and a fixed ε > 0 (which is different from the regularization
parameter ε mentioned earlier), we define x = TS(z, ε) to be the time signal x such that
∣∣z − x∣∣∞ ≤ ε and ∣∣D(x)∣∣2 is minimal, where D(x) = (x1 − x0, x2 − x1, . . . , xn − xn−1) is the
discrete derivative. We can picture x as a string between z − ε and z + ε which is pulled
tight. We can alternatively think of this process in terms of the decomposition z = x + y,
where x is a denoised, smoother approximation of z, and y is the noise with ∣∣y∣∣∞ ≤ ε.
An efficient algorithm to compute TS(z, ε) is described in [35]. One advantage of this
method is that—by varying the parameter ε—it allows us to consider different scales and
multiple approximations of one signal at the same time, and thereby extract higher order
features (a matrix of features from a single signal). In [22], the taut-string method was
applied to the heart rate variation (HRV) signal that measures time intervals between
consecutive R-peaks in the ECG signal. We will apply the taut-string method to the ECG
signal itself. For larger values of ε, the signal x = TS(z, ε) extracts only the R-peaks, and for
slightly smaller values of ε, x = TS(z, ε) will also capture the main features of the T-wave.
By varying ε and capturing statistics about x = TS(z, ε) and y = z− x, one captures important
aspects of the morphology of the ECG signal at multiple scales.

The PTB dataset consists of multi-lead ECG recordings from both healthy patients
and those with various health conditions (predominantly myocardial infarction). We only
considered recordings that are at least 90 seconds long, truncated them to a fixed length of
90 seconds and removed noise with a Butterworth filter. We then applied the taut-string
method to each of the 12 leads using 5 fixed parameter values (0.0100, 0.1575, 0.3050, 0.4525,
and 0.6000), and finally extracted 6 features from each lead (number of line segments,
number of inflection segments, total variation of noise, total variation of denoised signal,
power of denoised signal, power of noise). In the end, we obtain a tensor from each
recording of size 6× 5× 12. The tensorization process is summarized in Figure 3. We have a
total of 24 healthy and 129 unhealthy patients, some of which have multiple tensors (arising
from multiple recordings in the dataset).

In each run of our experiments, we take half the patients from each class for training,
and use the remaining ones for testing. The healthy ones for training and testing are
oversampled, so that the training set has an equal number of healthy and unhealthy ones,
as well as the testing set. For each of the 6 features of each of the 12 leads, we normalize
across all samples and Taut-string parameter values use mean and standard deviation
from the training data. We then classify the tensors using KNMDA and other tensor-based
methods, or vectorize them and classify the vectorized tensors using linear SVM and
linear LDA.



Algorithms 2023, 16, 104 14 of 20

Input: 12 lead ECG
signal for one patient

Split into one or
more signals 90

seconds long

Remove noise with
Butterworth filter

Apply Taut-string
to each lead with 5

fixed parameter values

Extract 6 features
from each lead

Output: one tensor of
size 6× 5× 12 for each
90 second long signal

Figure 3. Construction of tensors from the PhysioNet PTB dataset for each patient.

For each of the MDA methods, we project onto the space R5×5×5 which is the choice of
dimension that seems to perform best as Tables 6 and 7 show. In KNMDA, SL-action was
chosen for all modes, with imposed regularization with parameter ε = 1 and a maximum
of 10 iterations. We repeated each run 30 times and report AUC averages and standard
deviations from each method in Table 8. We repeated the experiment after having added
Gaussian noise to the signals (after the Butterworth filter and before applying the taut
string method), with signal-to-noise ratios SNR of −10 and −30. Despite the low SNRs, all
methods perform reasonably well because of the way we extract features via taut string
and the fact that the multiple parameters for taut-string approximation encoded in the
tensors act as a denoising tool, which is an interesting result. In the case of clean tensors,
we also tested another another manifold optimization method, ManPDA, but it performed
worse than ManTDA with an average AUC of 0.85(0.09).

Table 6. Performance (mean AUC and standard deviation) of CMDA on tensors from the PTB dataset
as the dimensions [I, J, K] increase.

Dimensions [1,1,1] [2,2,2] [3,3,3] [4,4,4] [5,5,5]

AUC 0.83 0.87 0.86 0.90 0.91

SD 0.07 0.06 0.06 0.04 0.03

Dimensions [6,5,4] [6,5,5] [6,5,6] [6,5,7] [6,5,8]

AUC 0.90 0.90 0.76 0.57 0.60

SD 0.05 0.05 0.17 0.13 0.11



Algorithms 2023, 16, 104 15 of 20

Table 7. Performance (mean AUC and standard deviation) of ManTDA on tensors from the PTB
dataset as the dimensions [I, J, K] increase (10 iterations).

Dimensions [1,1,1] [2,2,2] [3,3,3] [4,4,4] [5,5,5]

AUC 0.82 0.81 0.82 0.82 0.85

SD 0.05 0.08 0.06 0.10 0.09

Dimensions [6,5,4] [6,5,5] [6,5,6] [6,5,7] [6,5,8]

AUC 0.85 0.84 0.71 0.52 0.57

SD 0.09 0.07 0.12 0.16 0.10

Table 8. Classification of tensors extracted from ECG recordings, with different signal-to-noise ratios
(mean AUC and standard deviation). The bold values represent the best performance for each
column.

Method Clean SNR = −10 SNR = −30

KNMDA 0.94 (0.03) 0.92 (0.03) 0.88 (0.04)
DATEReig 0.90 (0.04) 0.81 (0.06) 0.80 (0.06)

DATER 0.90 (0.04) 0.83 (0.05) 0.82 (0.04)
CMDA 0.91 (0.03) 0.80 (0.08) 0.79 (0.07)

SVM 0.91 (0.03) 0.85 (0.06) 0.85 (0.05)
LDA 0.68 (0.07) 0.59 (0.07) 0.56 (0.07)

ManTDA 0.87 (0.05) 0.72 (0.10) 0.70 (0.12)

5. Discussion

Our proposed method depends on the choice of group action, the regularization
parameter ε, and the maximum number of iterations.

In all the experiments we performed, our method seems to be mostly affected by
the choice of group action (as we would expect). This might suggest a cross-validation
approach to choose the best group action for a given dataset. On the other end, on the
synthetic data—perhaps due to their symmetry—SLn1 × SLn2 × SLn3 consistently achieved
the best results. In the case of ECG tensors from the PTB dataset, Table 9 reports average
AUCs for each possible group action: SL6 × SL5 × SL12 is still best or close to being best.
Therefore, it seems that in practice choosing SLn action in each mode is always a safe
choice, and results in a less costly model. On the other hand, it is possible that for tensors
whose dimensions vary greatly from one mode to another, and for which each mode has
a significantly different nature, another group action would perform much better. In that
case, we would still be limited to eight choices (for third-order tensors). In any case, varying
the regularization parameter ε or the maximum number of iterations typically results in
negligible variations in performance. Tables 10 and 11 report variations in AUC for the
ECG tensors from the PTB dataset.

Table 9. Average AUCs (and standard deviations) for all possible choices of group actions (S for SLn

and T for Tn) on PTB tensors. For example, STS stands for SL6 ×T5 × SL12. The bold values represent
the best performance for each column.

Method Clean SNR = −10 SNR = −30

STS 0.95 (0.03) 0.91 (0.03) 0.86 (0.04)
TST 0.88 (0.06) 0.86 (0.05) 0.86 (0.05)
TSS 0.93 (0.03) 0.92 (0.03) 0.89 (0.03)
SST 0.91 (0.05) 0.87 (0.05) 0.87 (0.05)
TTS 0.94 (0.03) 0.90 (0.03) 0.88 (0.03)
SSS 0.94 (0.03) 0.92 (0.03) 0.88 (0.04)
TTT 0.89 (0.06) 0.88 (0.06) 0.87 (0.05)
STT 0.91 (0.04) 0.87 (0.06) 0.84 (0.06)



Algorithms 2023, 16, 104 16 of 20

Table 10. Performance of the proposed method (mean AUC and standard deviation) on ECG tensors
as the maximum number of iterations varies.

Maximum Iterations 1 3 5 10 50 100

AUC 0.90 0.93 0.93 0.93 0.93 0.93

SD 0.04 0.03 0.03 0.03 0.03 0.03

Table 11. Performance of the proposed method (mean AUC and standard deviation) on ECG tensors
as the regularization parameter ε varies.

Value of Parameter ε 0.1 0.5 1 2 5 10

AUC 0.93 0.93 0.93 0.93 0.92 0.92

SD 0.04 0.04 0.04 0.04 0.04 0.04

We note that other MDA methods would require us to test, in principle, n1n2n3 di-
mensions; significantly more than the 8 possible combinations of groups for KNMDA (and
similarly for higher order tensors). Additionally, another known issue of correctly choos-
ing the reduced dimensions is that the performance is not monotonic as dimensionality
increases (as shown in [11]). This costly step of finding best dimensions to project onto is
not necessary in KNMDA, since it looks for an optimal change of coordinates instead of an
optimal projection.

On the other hand, one potential downside of the fact that KNMDA does not project
the data onto a smaller dimensional space is that the most costly operations involve the
computation of inverse matrices of dimensions n1, n2, and n3, which could be computa-
tionally heavier. However, in our experiments on relatively small tensors it is significantly
faster than any other tensor method we tested. This is shown in Table 12, reporting average
times in seconds for training and testing several methods over HOSVD-based data; training
times are averages over 40 samples and testing times are averages over 100 samples. One
limitation of KNMDA is that it might not be suited for tensors of very large dimension:
in this scenario, a standard tensor dimensionality reduction preprocessing step would
be useful.

Table 12. Average execution times in seconds (and standard deviations) for HOSVD tensors, on a
training set of 40 tensors and a test set of 100 tensors.

KNMDA DATER DATEReig CMDA ManTDA

train 0.0603
(0.0207)

0.6252
(0.0997)

1.3007
(0.1953)

1.8484
(0.1836)

30.3623
(5.5336)

test 0.1043
(0.0146)

0.4238
(0.2660)

0.6347
(0.1963)

0.1836
(0.0446)

0.1209
(0.0350)

Furthermore, most MDA methods require random initialization, which means they
can provide different results for each run on the same dataset, and incur the additional cost
of trying out different initializations for each run. KNMDA’s results on the contrary are
completely determined by the input and do not change with different runs of the algorithm.
This fact and the previous discussion make a case for the stability of the proposed method.

Based on the experiments on synthetic data, we can see that generating data with
both fundamental tensorial decompositions (CP and HOSVD), KNMDA outperforms the
other methods we compared it with. In cases where KNMDA is comparable to one or more
other methods, it will still often outperform it as the amount of noise is increased. Another
impressive feature of KNMDA is that its performance is consistent over tensors of very
different natures. For example, linear SVM performs better than all other MDA methods
over CP-based data, but it is close to random guessing on HOSVD-based data. This latter
type of data is where MDA methods seem strongest, with manifold-based techniques



Algorithms 2023, 16, 104 17 of 20

performing better than the other MDA methods, concordant with the results from [3].
However, KNMDA performs better than both tensor-based methods and linear SVM on
both of these datasets. Finally, in the case of sparsity patterns, KNMDA achieves a perfect
classification already at a level of noise at which other methods are unable to distinguish
between classes.

We can notice a similar behavior in the case of tensors extracted from ECG, even though
the performances of all methods are now closer to each other. Adding noise, KNMDA
retains the best performance with the lowest standard deviation. It might seem surprising
that linear SVM achieves better results than other MDA methods, but this is consistent with
other papers that effectively used linear SVM for this type of data, as already discussed.

6. Conclusions

MDA approaches so far amount to solving difficult and ill-behaved optimization
problems. Because of this, researchers’ efforts have focused on finding more and more
complex algorithms to approximate the solutions, up to manifold optimization methods.
However, these methods are computationally costly and critically depend on correctly
choosing the dimensions to project onto, as well as running multiple iterations with different
initializations to avoid local minima. We proposed a completely different approach to MDA
that uses Kempf–Ness Theory to generalize the nearest Mahalanobis distance problem
to the higher order setting. This method is the natural extension to higher order of a
geometric interpretation of LDA. Our approach results in a better-behaved optimization
problem, with an essentially unique solution that can be effectively approximated with
a fast and stable alternating algorithm. Additionally, this interpretation naturally leads
to a tensorial formulation of QDA, the first one so far (to the best of our knowledge). We
performed extensive experiments on synthetic tensors that have been considered by several
researchers in previous work, and which cover different key structures of tensorial data,
such as CP and Tucker structures. Additionally, we experimented on tensors built from ECG
recordings, and tested the performance after the addition of significant noise to the signals.
In all these scenarios, our proposed method outperformed existing ones, even in cases
when existing tensor methods seem to be outperformed by a standard machine learning
technique such as SVM. Future work should involve more extensive testing or real datasets,
especially consisting of tensors of higher orders and dimensions; this scenario might require
a dimensionality reduction preprocessing step and/or more efficient algorithms for matrix
inversion.

Author Contributions: Conceptualization, C.M., H.D., K.N. and J.G.; methodology, C.M. and H.D.;
software, C.M. and O.A.; formal analysis, C.M., H.D., K.N. and J.G.; data curation, O.A.; writing—
original draft preparation, C.M.; writing—review and editing, C.M., H.D., J.G., K.N. and O.A.;
visualization, C.M.; supervision, H.D. and K.N.; project administration, J.G. and K.N.; funding acqui-
sition, H.D. and K.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Science Foundation under Grant No.
1837985. O.A. was partially supported by the University of Michigan NIH NIGMS Bioinformatics
Training Grant of the National Institutes of Health, award number T32GM070449.

Data Availability Statement: The PTB Diagnostic ECG Database is publicly available on PhysioNet.

Acknowledgments: The authors thank the referees for their comments.

Conflicts of Interest: The listed authors have a pending patent application US 63/335,546. The
funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in
the writing of the manuscript; or in the decision to publish the results.



Algorithms 2023, 16, 104 18 of 20

Abbreviations

CMDA Constrained multilinear discriminant analysis
CP Canonical polyadic
DATER Discriminant analysis with tensor representation
DATEReig Generalized eigenvalue discriminant analysis with tensor representation
DGTDA Direct general tensor discriminant analysis
ECG Electrocardiogram
HODA Higher-order discriminant analysis
HOSVD Higher-order singular value decomposition
KNMDA Kempf–Ness multilinear discriminant analysis
LDA Linear discriminant analysis
ManPDA Manifold PARAFAC discriminant analysis
ManTDA Manifold Tucker discriminant analysis
MDA Multilinear discirminant analysis
QDA Quadratic discriminant analysis
SVD Singular-value decomposition
SVM Support vector machine

Appendix A

This appendix deals with the exact solution of the optimization problem from Section 3
in the case of vector data, and it contains proofs of Propositions 1 and 2.

Consider vector data x1, . . . , xm ∈ Rn, with n < m, and concatenate them as columns of
a matrix X of size n ×m. Consider the group SLn acting on the columns of X. We wish to
minimize the squared norm of AX over all A ∈ SLn. Since the squared norm of a matrix Y
equals Tr(YtY), this optimization problem amounts to minimizing Tr((AX)t AX) over all
A ∈ SLn.

By Kempf–Ness Theorem, we are looking for critical points of the function Tr(YtY),
whose gradient is 2Y. A convenient way to find critical points is using the language of Lie
groups (i.e., groups that are also differentiable manifolds). In our setting, we are interested
in the Lie groups SLn and Tn. Let G be one of these two groups. The Lie algebra g of G is
the tangent space to G at the identity, and the tangent space of the orbit G ⋅X at AX for
some A ∈ G equals gAX. Therefore AX is a critical point of GX for the squared norm if
and only if the gradient of the squared norm at AX is perpendicular to gAX; equivalently,
if and only if Tr(2AX ⋅ BAX) = 0 for all B ∈ g.

Proof of Proposition 1. The Lie algebra of SLn equals the space of n × n matrices with trace
zero [36]. Therefore AX is a critical point if and only if Tr(2AX ⋅ BAX) = 0 for all B with
Tr(B) = 0. This amounts to Tr(BAXXt At) = 0 for all B with Tr(B) = 0, which is equivalent to
having that AXXt At is a multiple λIn of the identity. If λ = 0, this means that AXXt At = 0,
hence that X = 0. If λ ≠ 0, then necessarily λ > 0 and XXt = λ(At A)−1. Therefore XXt is
invertible and X has rank n. Furthermore, taking the determinant on both sides we have
det(XXt) = λn. Therefore λ = det(XXt)

1
n and At A = det(XXt)

1
n (XXt)−1. Now one just has

to check that the matrix A = DUt defined in the Proposition satisfies this equation.

Proof of Proposition 2. The proof is very similar to the previous one. The Lie algebra of Tn
equals the space of n × n diagonal matrices with trace zero. Therefore AX is a critical point
if and only if Tr(2AX ⋅ BAX) = 0 for all diagonal matrices B with Tr(B) = 0. This amounts
to Tr(AtBAXXt) = 0 for all diagonal matrices B with Tr(B) = 0. It is now easy to check that
the matrix A defined in the Proposition satisfies this condition.

References
1. Li, Q.; Schonfeld, D. Multilinear Discriminant Analysis for Higher-Order Tensor Data Classification. IEEE Trans. Pattern Anal.

Mach. Intell. 2014, 36, 2524–2537. [CrossRef]
2. Liu, Y.; Zhao, Q.; Zhang, L. Uncorrelated multiway discriminant analysis for motor imagery EEG classification. Int. J. Neural Syst.

2015, 25, 1550013. [CrossRef]

http://doi.org/10.1109/TPAMI.2014.2342214
http://dx.doi.org/10.1142/S0129065715500136


Algorithms 2023, 16, 104 19 of 20

3. Frølich, L.; Andersen, T.S.; Mørup, M. Rigorous optimisation of multilinear discriminant analysis with Tucker and PARAFAC
structures. BMC Bioinform. 2018, 19, 197. [CrossRef]

4. Padhy, S.; Goovaerts, G.; Boussé, M.; de Lathauwer, L.; van Huffel, S. The Power of Tensor-Based Approaches in Cardiac Appli-
cations. In Biomedical Signal Processing: Advances in Theory, Algorithms and Applications; Springer: Singapore, 2020; pp. 291–323.
[CrossRef]

5. Padhy, S.; Dandapat, S. Third-order tensor based analysis of multilead ECG for classification of myocardial infarction. Biomed.
Signal Process. Control 2017, 31, 71–78. [CrossRef]

6. Minoccheri, C.; Soroushmehr, R.; Gryak, J.; Najarian, K. Tensor Methods for Clinical Informatics. In Artificial Intelligence in
Healthcare and Medicine; CRC Press: Boca Raton, FL, USA, 2022; pp. 261–281.

7. Debals, O.; de Lathauwer, L. Stochastic and Deterministic Tensorization for Blind Signal Separation. In Latent Variable Analysis and
Signal Separation: 12th International Conference, LVA/ICA 2015, Liberec, Czech Republic, 25–28 August 2015, Proceedings 12; Springer
International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 9237, pp. 3–13. [CrossRef]

8. Liu, K.; Yong-Qing, C.; Yang, J.Y. Algebraic feature extraction for image recognition based on an optimal discriminant criterion.
Pattern Recognit. 1993, 26, 903–911. [CrossRef]

9. Kong, H.; Teoh, E.K.; Wang, J.G.; Venkateswarlu, R. Two-dimensional Fisher discriminant analysis: Forget about small sample
size problem. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, ICASSP ’05,
Philadelphia, PA, USA, 23 March 2005; Volume 2, pp. 761–764.

10. Ye, J.; Janardan, R.; Li, Q. Two-dimensional linear discriminant analysis. In Advances in Neural Information Processing 2004; The
MIT Press: Cambridge, MA, USA, 2005.

11. Yan, S.; Xu, D.; Yang, Q.; Zhang, L.; Tang, X. Discriminant analysis with tensor representation. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005;
Volume 1, pp. 526–532. [CrossRef]

12. Visani, M.; Garcia, C.; Jolion, J.M. Normalized Radial Basis Function Networks and Bilinear Discriminant Analysis for Face
Recognition. In Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, 2005, Como, Italy, 15–16
September 2005; pp. 342–347. [CrossRef]

13. Sloane, N.J.A. Error-correcting codes and invariant theory: New applications of a nineteenth century technique. Am. Math. Mon.
1977, 84, 82–107. [CrossRef]

14. Mundy, J.L.; Zisserman, A. (Eds.) Geometric Invariance in Computer Vision; MIT Press: Cambridge, MA, USA, 1992.
15. Boutin, M.; Kemper, G. On reconstructing n-point configurations from the distribution of distances or areas. Adv. Appl. Math.

2004, 32, 709–735. [CrossRef]
16. Garg, A.; Oliveira, R. Recent progress on scaling algorithms and applications. Bull. EATCS 2018, 125. [CrossRef]
17. Bagherian, M.; Kim, R.B.; Jiang, C.; Sartor, M.A.; Derksen, H.; Najarian, K. Coupled matrix–matrix and coupled tensor–matrix

completion methods for predicting drug–target interactions. Briefings Bioinform. 2021, 22, 2161–2171. [CrossRef]
18. Améndola, C.; Kohn, K.; Reichenbach, P.; Seigal, A. Invariant Theory and Scaling Algorithms for Maximum Likelihood Estimation.

SIAM J. Appl. Algebra Geom. 2021, 5, 304–337. [CrossRef]
19. Kempf, G.; Ness, L. The length of vectors in representation spaces. In Algebraic Geometry; Springer: Berlin/Heidelberg, Germany,

1979; pp. 233–243.
20. Signoretto, M.; De Lathauwer, L.; Suykens, J.A. A kernel-based framework to tensorial data analysis. Neural Netw. 2011,

24, 861–874. [CrossRef]
21. Goldberger, A.L.; Amaral, L.A.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E.

PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation
2000, 101. e215–e220. [CrossRef]

22. Belle, A.; Ansari, S.; Spadafore, M.; Convertino, V.A.; Ward, K.R.; Derksen, H.; Najarian, K. A Signal Processing Approach for
Detection of Hemodynamic Instability before Decompensation. PLoS ONE 2016, 11, e0148544. [CrossRef]

23. Sidiropoulos, N.D.; De Lathauwer, L.; Fu, X.; Huang, K.; Papalexakis, E.E.; Faloutsos, C. Tensor Decomposition for Signal
Processing and Machine Learning. IEEE Trans. Signal Process. 2017, 65, 3551–3582. [CrossRef]

24. Bader, B.W.; Kolda, T.G. Tensor decompositions and their application. SIAM Rev. 2009, 51, 455–500.
25. Håstad, J. Tensor rank is NP-complete. J. Algorithms 1990, 11, 644–654. [CrossRef]
26. Håstad, J. Tensor rank is NP-complete. In Automata, Languages and Programming (Stresa, 1989); Lecture Notes in Computer Science;

Springer: Berlin, Germany, 1989; Volume 372, pp. 451–460. [CrossRef]
27. Hillar, C.J.; Lim, L.H. Most tensor problems are NP-hard. J. ACM 2013, 60, 1–39. [CrossRef]
28. Richardson, R.W.; Slodowy, P.J. Minimum Vectors for Real Reductive Algebraic Groups. J. Lond. Math. Soc. 1990, s2-42, 409–429.

[CrossRef]
29. Andersson, C.; Bro, R. The N-way Toolbox for Matlab. Chemom. Intell. Lab. Syst. 2000, 52, 1–4. [CrossRef]
30. Boumal, N.; Mishra, B.; Absil, P.A.; Sepulchre, R. Manopt, a Matlab Toolbox for Optimization on Manifolds. J. Mach. Learn. Res.

2014, 15, 1455–1459.
31. Absil, P.A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University Press: Princeton, NJ,

USA, 2007.

http://dx.doi.org/10.1186/s12859-018-2188-0
http://dx.doi.org/10.1007/978-981-13-9097-5_13
http://dx.doi.org/10.1016/j.bspc.2016.07.007
http://dx.doi.org/10.1007/978-3-319-22482-4_1
http://dx.doi.org/10.1016/0031-3203(93)90056-3
http://dx.doi.org/10.1109/CVPR.2005.131
http://dx.doi.org/10.1109/AVSS.2005.1577292
http://dx.doi.org/10.1080/00029890.1977.11994294
http://dx.doi.org/10.1016/S0196-8858(03)00101-5
http://dx.doi.org/10.48 550/arXiv.1808.09669
http://dx.doi.org/10.1093/bib/bbaa025
http://dx.doi.org/10.1137/20M1328932
http://dx.doi.org/10.1016/j.neunet.2011.05.011
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1371/journal.pone.0148544
http://dx.doi.org/10.1109/TSP.2017.2690524
http://dx.doi.org/10.1016/0196-6774(90)90014-6
http://dx.doi.org/10.1007/BFb0035776
http://dx.doi.org/10.1145/2512329
http://dx.doi.org/10.1112/jlms/s2-42.3.409
http://dx.doi.org/10.1016/S0169-7439(00)00071-X


Algorithms 2023, 16, 104 20 of 20

32. Bader, B.W.; Kolda, T.G. MATLAB Tensor Toolbox Version 3.4. Available online: www.tensortoolbox.org (accessed on 1 September
2021).

33. Phan, A.H.; Cichocki, A. Tensor decompositions for feature extraction and classification of high dimensional datasets. Nonlinear
Theory Its Appl. IEICE 2010, 1, 37–68. [CrossRef]

34. Bousseljot, R.; Kreiseler, D.; Schnabel, A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. Biomed.
Tech. 1995, 40, 317–318. [CrossRef]

35. Davies, P.L.; Kovac, A. Local Extremes, Runs, Strings and Multiresolution. Ann. Statist. 2001, 29, 1–65. [CrossRef]
36. Derksen, H.; Kemper, G. Computational Invariant Theory, 2nd ed.; Encyclopaedia of Mathematical Sciences; Springer:

Berlin/Heidelberg, Germany, 2015; Volume 130.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

www.tensortoolbox.org
http://dx.doi.org/10.1587/nolta.1.37
http://dx.doi.org/10.1515/bmte.1995.40.s1.317
http://dx.doi.org/10.1214/aos/996986501

	Introduction
	Notation and Background Material
	Algorithm
	Experimental Results
	Synthetic Data
	CP Based Data
	HOSVD Based Data
	Classification of Sparsity Patterns

	Tensors from ECG Data

	Discussion
	Conclusions
	Appendix A
	References

