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Polystability in positive characteristic and
degree lower bounds for invariant rings

Harm Derksen and Visu Makam

Abstract. We develop a representation theoretic technique for detecting closed orbits that is
applicable in all characteristics. Our technique is based on Kempf’s theory of optimal subgroups
and we make some improvements and simplify the theory from a computational perspective.
We exhibit our technique in many examples and in particular, give an algorithm to decide if a
symmetric polynomial in n-variables has a closed SLn-orbit.

As an important application, we prove exponential lower bounds on the maximal degree of
a system of generators of invariant rings for two actions that are important from the perspective
of Geometric Complexity Theory (GCT). The first is the action of SL.V / on S3.V /˚3, the
space of 3-tuples of cubic forms, and the second is the action of SL.V / � SL.W / � SL.Z/ on
the tensor space .V ˝W ˝ Z/˚5. In both these cases, we prove an exponential lower degree
bound for a system of invariants that generate the invariant ring or that define the null cone.

1. Motivation

We choose our ground field K to be an algebraically closed field of characteristic p.
Our results will be targeted towards the case of p > 0, but many of our results are new
even in the case of p D 0. In this paper, we focus on two important problems with
particular emphasis on positive characteristic – how to determine whether an orbit is
closed (a.k.a. polystability) and how to prove exponential degree lower bounds for
invariant rings. We briefly discuss the motivation behind these problems and give
context to the main contributions of this paper before proceeding to the main content.

To begin, let us consider the following result:

Theorem 1.1. Consider the action of SL.V / on S3.V /, the space of cubic forms,
where V is a 3-dimensional vector space overK with basis x; y; z.Consider the com-
plete homogeneous symmetric polynomial h3.x; y; z/ 2 S3.V /, i.e., h3.x; y; z/ is the
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sum of all monomials of degree 3. Then h3.x; y; z/ is polystable (i.e., its SL.V / orbit
is Zariski-closed) unless p 2 ¹2; 5º.

How does one go about proving such a result? What techniques do we have to
determine whether an orbit is closed or not, especially in positive characteristic?
Naively, one could try to get hold of the ideal of polynomials which vanish on the
orbit and check if its zero locus contains a point outside the orbit. However, there
seems to be no reasonable way to do this. One natural approach for this would be
via generators of the invariant ring, but that is computationally infeasible even in the
seemingly simple example of h3.x; y; z/ above.

In characteristic zero, one useful result is the Dadok–Kac criterion [9] (see [16,
Section 6] for a generalization). Another approach used in literature is a criterion
due to Kempf [35, Corollary 4.5], but this is again only applicable in characteristic
zero.1 But even in characteristic zero, the example of h3.x; y; z/ above does not fall
within the scope of either tool. Yet another tool at our disposal is the fact that any
homogeneous polynomial with a non-vanishing discriminant has a closed orbit with
a finite stabilizer (this holds in arbitrary characteristic). However, discriminants are
very hard to compute, and are very specific to the action of SL.V / on Sd .V / without
much scope for generalizing to other actions. We also point the reader to [48, 49] for
some more investigations into closed orbits. To summarize, while certain techniques
for proving closedness of orbits exist in literature, they are quite limited in scope and
severely lacking in their applicability in positive characteristic.

Our motivation for investigating closed orbits in positive characteristic comes
from the problem of degree bounds in invariant theory and in particular results on
exponential degree lower bounds [16]. The significance of degree bounds in invari-
ant theory is best understood through the lens of computational complexity, and in
particular the Geometric Complexity Theory (GCT) program.2 An understanding of
degree bounds is a first step in a large, extensive, and ambitious program put forth
in [42] that aims to connect invariant theory and central problems in complexity at
a fundamental level. In recent years, an alternate approach to algorithmic invariant
theory using geodesic optimization techniques has emerged, see [6] and references
therein. However, these new optimization techniques are manifestly a characteristic
zero approach. With no promising alternative approach in positive characteristic, the
algebraic approaches and in particular degree bounds find a renewed importance in
positive characteristic.

1For example, [7] uses [35, Corollary 4.5] to prove that the matrix multiplication and unit
tensors have closed orbits, which by the way also follows easily from the Dadok–Kac criterion.

2The GCT program is an algebro-geometric approach to the celebrated P vs NP problem.
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In a previous paper [16], we proved exponential degree lower bounds for the gen-
erators of invariant rings for cubic forms and tensor actions in characteristic zero. The
technique was based on the Grosshans principle and a major component was to prove
that certain points (with significant symmetries) have closed orbits.3 We wanted to
extend those results to positive characteristic, which brings a few challenges. By far,
the hardest challenge is the ability to prove closedness of an orbit. The points we need
for our purposes are considerably complicated, for example:

Problem 1.2. Let V be a 3n-dimensional vector space with basis ¹xi ; yi ; ziº1�i�n.
Consider the action of SL.V / on W D S3.V /˚2. Is

w D

� nX
iD1

x2i zi ;

nX
iD1

y2i zi

�
2 W

polystable?

In order to handle such cases, we develop a technique, also inspired by Kempf [35],
based on his theory of optimal 1-parameter subgroups. Our technique also has its lim-
itations, for example, to be feasible, there needs to be significant symmetries for the
point that is being investigated (which for example, the Dadok–Kac criterion does
not require). In many situations, however, the points of interest often carry symme-
tries and moreover these symmetries are often the reason for their study. A high-level
perspective of our approach can be summarized as follows – search for optimal one-
parameter subgroups (defined in Section 4) and if the search is unsuccessful, then
the orbit is closed. The highly non-trivial part is to make the search for optimal 1-
parameter subgroups feasible. A significant contribution of this paper is to develop
the needed technical framework in order to utilize Kempf’s theory to its full poten-
tial from a computational perspective. We succeed not just in our endeavor to extend
exponential degree lower bounds for invariant rings to positive characteristic (we also
improve the characteristic zero results), but also in exhibiting the usefulness of our
technique in other contexts that are of interest to a wide mathematical audience,
notably symmetric polynomials.

We now proceed to introducing the main results of this paper rigorously.

2. Introduction and main results

First, we recall invariant theory and in particular, the notions of degree bounds, null
cones and separating invariants. Next, we briefly explain the method to prove degree

3We had used (a generalization of) the Dadok–Kac criterion.
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lower bounds for invariant rings via Grosshans’ principle and present our results on
exponential degree lower bounds. Following that, we discuss our approach to proving
polystability and the various results we are able to prove.

2.1. Invariant theory

The subject of invariant theory has had a computational nature to its side from its
very beginnings in the 19th century. The nature of computational results has evolved
over the course of time in tandem with the mathematical community’s understanding
of the notions of computation and efficiency. In this century, driven by the Geomet-
ric Complexity Theory (GCT) program, computational invariant theory has evolved
to incorporate notions of efficiency as described rigorously in the subject of compu-
tational complexity. Moreover, fundamental connections between the computational
efficiency of invariant theoretic algorithms and central problems in theoretical com-
puter science such as VP vs VNP (an algebraic analog of the celebrated P vs NP) and
the polynomial identity testing problem have been discovered and has led to some
important advances in recent times, starting with [13, 23, 26, 34, 42] and followed by
more works such as [2, 6, 15].4

The basic setup is as follows. Recall that our ground field K is algebraically
closed. Let G be an algebraic group over K. Let V be a rational representation of G,
i.e., V is a finite-dimensional vector space, with a homomorphism of algebraic groups
�WG ! GL.V /. We write g � v or gv for �.g/v. Let KŒV � denote the ring of polyno-
mial functions on V (a.k.a. the coordinate ring). Note that

KŒV � D S.V �/ D ˚1dD1S
d .V �/

is the symmetric algebra over the dual V � and in particular a graded K-algebra. The
orbit Ov of a point v is defined as Ov WD ¹gv j g 2 Gº. A polynomial f 2 KŒV � is
called invariant if it is constant along orbits, i.e., f .gv/D f .v/ for all g 2 G, v 2 V .
The collection of all invariant polynomials forms a graded subalgebra of KŒV � which
we denote by KŒV �G and call the invariant ring or ring of invariants.

A groupG is called reductive if its unipotent radical is trivial. For a rational repre-
sentation of a reductive group, the invariant ring is finitely generated; see [31–33,44].
A central question in computational invariant theory is to efficiently describe a set of
generators (as a K-algebra) for the ring of invariants KŒV �G . The problem of degree
bounds is often a first step.

4See also [28, 41] for some recent negative results.
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Problem 2.1 (Degree bounds). For a rational representation V of a reductive groupG,
find strong bounds for the maximal degree of a set of (minimal) generators forKŒV �G ,
i.e., bounds for

ˇ.G; V / D min¹d j KŒV �G
�d is a system of generatorsº:

Degree bounds have been studied for several decades; see [10, 46, 47] and refer-
ences therein. Nevertheless, the aforementioned connections to complexity has given
the problem a new significance. For example, polynomial degree bounds for matrix
semi-invariants [13]5 were crucial in obtaining a polynomial time (algebraic) algo-
rithm for the problem of non-commutative rational identity testing (RIT) [34].6

The zero set of a collection of polynomials S � KŒV � is

V .S/ D ¹v 2 V j f .v/ D 0 for all f 2 Sº:

Hilbert’s null cone N � V is defined by N D V .
L1
dD1KŒV �

G
d
/.

Definition 2.2. We define �.G; V / to be the smallest integer D such that the non-
constant homogeneous invariants of degree � D define the null cone, so

�.G; V / D min
®
D j N D V

�LD
dD1KŒV �

G
d

�¯
:

General upper bounds for �G.V / were first given by Popov (see [46, 47]), and
improved by the first author in [10]. For any system of generating invariants, its zero
locus is the null cone, so it is clear that

ˇ.G; V / � �.G; V /:

In characteristic zero, the first author showed that ˇ.G; V / and �.G; V / are poly-
nomially related [10]. A central problem in algorithmic invariant theory is the orbit
closure intersection problem – given v;w 2 V , decide if SOv \ SOw D ;. This problem
in various instances captures many important problems in mathematics, computer sci-
ence and physics; see e.g., [6] and references therein. The following result is due to
Mumford and captures why invariant polynomials are useful for the problem of orbit
closure intersection.

5See [14] for extensions to quivers and [12] for extension to positive characteristic. For
applications of these results, see e.g., [17–19, 27, 36, 39] and references therein.

6A polynomial time analytic algorithm for RIT precedes the algebraic algorithm and does
not use degree bounds [26]. However, the analytic algorithm does not have an analog in positive
characteristic, whereas the algebraic algorithm works in all characteristics.
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Theorem 2.3. Let V be a rational representation of a reductive groupG. Let v;w2V .
Then,

SOv \ SOw ¤ ; , f .v/ D f .w/ 8f 2 KŒV �G :

Clearly, a system of generating invariants are sufficient for detecting orbit clo-
sure intersection. However, this approach is rarely efficient due to familiar complexity
theoretic barriers [28]. Yet, one can often get away with a smaller set of invariants.
A subset S � KŒV �G is called a separating subset if for every v; w 2 V such that
SOv \ SOw D ;, there exists f 2 S such that f .v/ ¤ f .w/.

Definition 2.4. We define ˇsep.G;V / to be the smallest integerD such that the invari-
ants of degree � D form a separating subset.

Clearly, we have

ˇ.G; V / � ˇsep.G; V / � �.G; V /: (1)

Separating subsets can be much better behaved than generating subsets in positive
characteristic; see e.g., [20]. One concrete instance in which ˇ.G;V / has been proven
to be strictly larger than ˇsep.G; V / is the case of matrix invariants [15].

We end this subsection by recalling the notions of stability.

Definition 2.5. Let �WG ! GL.V / be a rational representation of a reductive group.
Let v 2 V . We say v is:

� unstable, if 0 2 SOv;

� semistable, if 0 … SOv;

� polystable, if v ¤ 0 and Ov is closed;

� stable, if v is polystable and dim.Gv/ D dim.kernel of �/.

Note in particular that Theorem 2.3 implies that the null cone is precisely the
subset of unstable points.

2.2. Grosshans’ principle and exponential degree lower bounds

Constructing torus actions with exponential degree bounds is an excursion in linear
algebra; see e.g., [16, Section 3]. Indeed, the invariant theory for torus actions is much
better understood; see [55]. Tori happen to be commutative reductive groups and in
fact any connected commutative reductive group is a torus. The invariant theory for
non-commutative groups is much harder and in general it is difficult to even write
down invariants [28]. In characteristic zero, we gave a surjection from the invariant
rings for cubic forms and tensor actions to the invariant ring for a torus action. This
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allows one to “lift” lower bounds on invariant rings for tori to lower bounds on invari-
ant rings for cubic forms and tensor actions. Such a result is known as a lifting theorem
in complexity theory. In numerous areas of complexity, various lifting techniques and
barriers to them have been studied; see e.g., [4, 21, 29, 45, 51, 52].

In positive characteristic, the theory breaks down in a predictable way because of
the existence of non-smooth reductive groups. Nevertheless, we are able to lift bounds
for separating invariants, which we will explain below. First, we state Grosshans’
principle [30]. We let the group H �G act on G by .h; g/ � u D hug�1.

Theorem 2.6 (Grosshans’ principle). Let W be a representation of G, and let H be
a closed subgroup of G. Then we have an isomorphism

 W
�
KŒG�H ˝KŒW �

�G
! KŒW �H :

From Grosshans’ principle, we will derive the following main technical result:

Theorem 2.7. Let V;W be rational representations of a reductive group G. Suppose
v 2 V is such that its G-orbit is closed and let H D Gv D ¹g 2 G j gv D vº. Then

ˇ.G; V ˚W / � ˇsep.G; V ˚W / � ˇsep.H;W / � �.H;W /:

It is clear that to use this method in any meaningful way, one must be able to prove
that an orbit is closed, which we discuss in the next subsection. For now, we state our
results on exponential degree lower bounds. First, our result on cubic forms:

Theorem 2.8. Assume char.K/ ¤ 2. Let V be a 3n-dimensional vector space, and
consider the natural action of SL.V / on S3.V /˚3, the space of triplets of cubic forms.
Then,

ˇ
�
SL.V /; S3.V /˚3

�
�
2

3
.4n � 1/:

Our result on tensor actions:

Theorem 2.9. Let U; V; W be 3n-dimensional vector spaces. Consider the natural
action of G D SL.U / � SL.V / � SL.W / on .U ˝ V ˝W /˚5. Then

ˇ
�
G; .U ˝ V ˝W /˚5

�
� 4n � 1:

The importance of the above two results is best understood in the context of GCT
as has already been explained in [16].

2.3. Closed orbits

The following result captures essentially our strategy for proving closed orbits.
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Theorem 2.10. Let V be a rational representation of a reductive group G. Let v 2 V
and let Gv WD ¹g 2 G j gv D vº be its stabilizer. Let H � Gv be a maximal torus
of Gv . Let T be a subset of maximal tori of G such that

(1) for every parabolic P � Gv , there exists T 2 T such that T � P ;

(2) for every T 2 T , there is an inclusion kHk�1 � T for some k 2 Gv (that can
depend on T ).

Then, the orbit Ov is closed if and only if T � v is closed for all T 2 T .

We state a few variants/generalizations of the above theorem in Section 4 and pick-
ing the right variant/generalization can often make things much easier. In particular,
we will mildly strengthen some of Kempf’s statements.

Let us briefly summarize what is required to be able to use the above theorem
effectively. For any given torus T , checking whether the torus orbit T � v is closed
is not so difficult; see Section 37. Finding a collection of maximal tori that satisfy
the first condition while at the same time having computational feasibility is much
harder. For example, if Gv is trivial, then one has to take T to be all maximal tori
of G, which is computationally infeasible. A Gv that severely restricts the potential
parabolic groups containing it is needed to make the computation tractable.

In the case whenG D SL.V / (or a product of SL’s), we can be a bit more explicit.
Parabolic subgroups can be seen as subgroups that fix a flag of subspaces in V . If
a parabolic subgroup contains Gv , then the corresponding flag consists of Gv-stable
subspaces of V . Hence, in the cases where there are very few Gv-subrepresentations
of V , the technique is particularly useful. Perhaps more interestingly, even in some
cases where we have an infinite number of Gv-stable subspaces, the technique can
still be applied successfully and this is actually needed for our results on exponential
degree bounds!

2.4. New results on polystability for polynomials

In this paper, we take a more detailed look at polynomials, particularly those with
symmetries. We prove several results with respect to polystability (and semistability,
unstability, etc.), some of which are new even in characteristic zero. Consider the
defining action of the special linear group SLn.K/ on Kn. Let x1; : : : ; xn denote
the standard basis for Kn, and consider the natural induced action of SLn.K/ on
Sd .Kn/ D KŒx1; : : : ; xn�d , the space of degree d polynomials in x1; : : : ; xn.

Definition 2.11. We say f 2KŒx1; : : : ;xn�d is unstable (resp. semistable, polystable,
stable) if it is SLn.K/-unstable (resp. semistable, polystable, stable).

7There is even a polynomial time algorithm for this [5].



Polystability in positive characteristic and degree lower bounds for invariant rings 361

We say an exponent vector e D .e1; : : : ; en/ is entirely even if all the ei s are even.
For a polynomial

f D
X
e

cex
e
2 KŒx1; : : : ; xn�;

we define the support

supp.f / D ¹e 2 Nn
j ce ¤ 0º � Nn

� Qn
� Rn:

The Newton polytope of a polynomial f is the convex hull of its support and is
denoted NP.f /.

Theorem 2.12. Let char.K/ ¤ 2. Let f D
P
e entirely even cex

e 2 KŒx1; : : : ; xn�d .
Then f is

� semistable if and only if .d
n
; d
n
; : : : ; d

n
/ 2 NP.f /;

� polystable if and only if .d
n
; d
n
; : : : ; d

n
/ is in the relative interior of NP.f /.

Remark 2.13. The above result also works if we replace entirely even exponent vec-
tors with entirely 0 mod d exponent vectors for any d > 2 (as long as p − d ). Also,
observe that in characteristic zero, such a result follows easily from the Dadok–Kac
criterion [9]. The argument we use in positive characteristic is far more subtle.

We now turn to symmetric polynomials. A polynomial f 2KŒx1; : : : ;xn� is called
symmetric if it is invariant under permutations of the xi ’s, i.e., f 2 KŒx1; : : : ; xn�Sn .
Symmetric polynomials have been intensely studied for over a century with diverse
motivations and serve to interconnect many disparate fields. We refer the interested
reader to Macdonald’s seminal text [40]. Yet, there seems to have been relatively little
work on polystability.

It turns out that Theorem 2.10 or its variants are not quite sufficient for our
purposes and we have to additionally leverage the relationship between optimal 1-
parameter subgroups and optimal parabolic subgroups. For example, let p − n with
no restriction on d . Then, to decide polystability of a symmetric polynomial f of
degree d in n variables, we show that one only needs to understand the limits (at 0
and 1) of precisely one 1-parameter subgroup; see Lemma 8.8 for a precise state-
ment. In particular, such results enable us to give an algorithm to decide polystability
of symmetric polynomials.

Theorem 2.14. Let f be a homogeneous symmetric polynomial of degree d in n vari-
ables. Then Algorithms 8.11 and 8.13 can decide if f is unstable (resp. semistable,
polystable, stable).

We refrain from giving a complexity-theoretic analysis of Algorithms 8.11
and 8.13 as it digresses too far from the scope of this paper. However, the complex-
ity of most of the individual steps in the algorithm are well known, and perhaps the
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non-trivial part is to establish what is the right way to input a symmetric polynomial,
etc.

Independent of the complexity of the algorithms, we are also able to prove a num-
ber of results on polystability of symmetric polynomials. We state only here to avoid
introducing too much notation in the introduction; see Section 8 for more such results.
For a partition � ` d , let s�.x1; : : : ; xn/ denote the Schur polynomial associated to �
in n variables; see Section 8 for the definition.

Theorem 2.15. Let char.K/ D 0; d � 2 and � ` d . Then for any n > d , the Schur
polynomial s�.x1; : : : ; xn/ is polystable.

2.5. Organization

In Section 3, we recall the computational invariant theory for torus actions. Section 4
is devoted to discussing Kempf’s theory of optimal subgroups and the consequences
of it for the purposes of determining polystability. We review the representation theory
of the special linear group and focus on the computational aspects relevant for us and
prove Theorem 2.12 in Section 5. In Section 6, we prove that orbits of certain points
(which are relevant for degree lower bounds) are closed. In Section 7, we explain our
technique using Grosshans’ principle, i.e., Theorem 2.7 and prove exponential degree
lower bounds for cubic forms and tensor actions, i.e., Theorem 2.8 and Theorem 2.9.
Section 8 discusses polystability of symmetric polynomials and in particular gives an
algorithm for it, i.e., we prove Theorem 2.14. Finally, in Section 9, we determine the
polystability of certain classes of interesting symmetric polynomials.

3. Invariant theory for torus actions

The invariant theory for torus actions is well studied; see [55] or [16, Section 3]. We
will briefly recall the important statements:

Let T D .K�/m be anm-dimensional torus. Let X.T / denote the set of characters
or weights (i.e., morphisms of algebraic groups T ! K�). For each � 2 Zm, we
associate a character, also denoted � by abuse of notation, defined by the formula

�.t1; : : : ; tm/ D

mY
iD1

t
�i

i :

This defines an isomorphism of abelian groups from Zm to X.T /. Now, suppose V is
a representation of T . A vector v 2 V is called a weight vector of weight � 2 Zm D

X.T / if t � v D �.t/v for all t 2 T . We have a weight space decomposition

V D ˚�2ZmV�;
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where V�D ¹v 2 V j t � vD �.t/vº. In particular, we have a basis consisting of weight
vectors.

Let E D .e1; : : : ; en/ be a basis of V consisting of weight vectors. Suppose the
weight of ei is �.i/. Using this basis, identify V with Kn, which then allows us to
identify KŒV � with the polynomial ring KŒz1; : : : ; zn�. A monomial zc1

1 z
c2

2 : : : z
cn
n 2

KŒV � is invariant if and only if X
i

ci�
.i/
D 0:

Moreover, the invariant ring KŒV �T D KŒz1; : : : ; zn�
T is linearly spanned by such

invariant monomials. We refer to [16, Section 3] for more details. For a vector v, con-
sider its support Supp.v/ D ¹i j vi ¤ 0º. Then, we define its weight polytope WP.v/
to be the convex hull of the points ¹�.i/ j i 2 Supp.v/º thought of as a subset of Rm.
Even without coordinates with respect to an explicit basis, one can define the weight
polytope. For each v 2 V , we can write

v D
X
�

v�;

where v� 2 V�. Then, the weight polytope WP.v/ is the convex hull of the points
¹� j v� ¤ 0º. We call ¹� j v� ¤ 0º the weight set of v.

Lemma 3.1. Let V be an n-dimensional representation of an m-dimensional torus
T D .K�/m and let 0 ¤ v 2 V . Then,

� v is semistable if and only if 0 2WP.v/;

� v is polystable if and only if 0 is in the relative interior of WP.v/;

� v is stable if and only if 0 is in the interior of WP.v/.

For concreteness, we discuss the action of STn the group of diagonal n � n matri-
ces with determinant 1 on Sd .Kn/, the space of degree d polynomials in x1; : : : ; xn.
For a polynomial f 2 Sd .Kn/, write

f D
X
e2Nn

cex
e:

We define the Newton polytope

NP.f / D convex hull ¹e 2 Nn
jce ¤ 0º:

We think of NP.f / not as a subset of Rn, but as a subset of

Ed D
®
.v1; : : : ; vn/ 2 Rn j

P
i vi D d

¯
:

This is necessary for the last part of the following corollary. In this special case, the
above lemma translates to the following:
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Corollary 3.2. Consider the action of STn on Sd .Kn/. Let 0 ¤ f 2 Sd .Kn/. Then

� f is semistable if and only if .d
n
; d
n
; : : : ; d

n
/ 2 NP.f /;

� f is polystable if and only if .d
n
; d
n
; : : : ; d

n
/ is in the relative interior of NP.f /;

� f is stable if and only if .d
n
; d
n
; : : : ; d

n
/ is in the interior of NP.f /.

For torus actions, semistability, polystability and stability are all determined by
the weight polytopes. For polystability we draw a connection to invariant monomials.

Lemma 3.3. Let V be an n-dimensional representation of an m-dimensional torus
T D .K�/m, and let E D .e1; : : : ; en/ be a weight basis such that the weight of ei
is �.i/. Let 0 ¤ v 2 V . Then, the following are equivalent:

� v is polystable.

� For every i 2 Supp.v/, there exists an invariant monomial
Q
j2Supp.v/ x

cj
j such

that ci � 1, where x1; x2; : : : ; xn is a basis of V � that is dual to E .

We recall the Hilbert–Mumford criterion, for which we need to understand 1-
parameter subgroups. A 1-parameter subgroup of T is a morphism of algebraic groups
�WK� ! T . We denote by �.T /, the set of 1-parameter subgroups of T . If we iden-
tity T with .K�/m, then any 1-parameter subgroup is of the form

t 7! .ta1 ; ta2 ; : : : ; tam/;

where ai 2 Z. There is an abelian group structure on �.T /, if we take 1-parameter
subgroups t 7! .ta1 ; ta2 ; : : : ; tam/ and t 7! .tb1 ; tb2 ; : : : ; tbm/, we can multiply them
to get another 1-parameter subgroup

t 7! .ta1Cb1 ; ta2Cb2 ; : : : ; tamCbm/:

This allows us to also identify �.T / with Zm as an abelian group.

Theorem 3.4 (Hilbert–Mumford criterion). Let V be an n-dimensional representa-
tion of an m-dimensional torus T D .K�/m. Let v 2 V and consider its orbit Ov .
Let S be another closed T -stable subset of V . Then S \ SOv ¤ ; if and only if there
exists a 1-parameter subgroup � such that limt!0 �.t/ � v 2 S .

Definition 3.5. Let V be an n-dimensional representation of an m-dimensional torus
T D .K�/m, and let E D .e1; : : : ; en/ be a weight basis such that the weight of ei
is �.i/. Let v D .v1; : : : ; vn/ 2 V , where vi are coordinates in the basis E . We say
i 2 Supp.v/ is essential if there exists a non-negative linear combinationX

j2Supp.v/

cj�
.j /
D 0
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with ci > 0. We define

eSupp.v/ D ¹i 2 Œn� j i is essentialº;

and we define ess.v/ D vjeSupp.v/ by

ess.v/i D

´
vi if i 2 eSupp.v/;

0 otherwise:

The following lemma is well known; see e.g. [50, Example 1.3].

Lemma 3.6. Let V be an n-dimensional representation of an m-dimensional torus
T D .K�/m, and let E D .e1; : : : ; en/ be a weight basis such that the weight of ei
is �.i/. Let v 2 V . Then ess.v/ is a point in the unique closed T -orbit inside OT;v .

4. Kempf’s theory of optimal subgroups

Let G be a reductive algebraic group overK. Let V be a rational representation of G.
We will recall some technical notions that we need to be able to state the known
results on optimal subgroups in a coherent fashion. We are content to only briefly
recall these notions, referring the interested reader to [35] for more details. Much of
these technical notions are only required to prove our main results in this section, but
are not needed in their statements or anywhere else in this paper.

A 1-parameter subgroup of G is a morphism of algebraic groups �WK� ! G.
Let �.G/ denote the set of 1-parameter subgroups of G. A length function k k on
�.G/ is a non-negative real valued function such that

� kg � �k D k�k for any g 2 G and � 2 �.G/;

� for any maximal torus T of G, there is a positive-definite integral valued bilinear
form . ; / on �.T / such that .�; �/ D k�k2 for any � 2 �.T /.

Recall that �.T / represents the set of 1-parameter subgroups of T . It is a free
abelian group of rank equal to the dimension of T . The existence of a length function
is not obvious but not very involved either. Pick a maximal torus T , pick a positive-
definite integral valued bilinear form . ; / on �.T / which is invariant under the Weyl
group. Thus, for any � 2 �.G/, we view it in �.gTg�1/ for some g 2 G (since all
maximal tori are conjugate and any 1-parameter subgroup lies in a maximal torus)
and we define k�k D .g�1�g; g�1�g/. Note that g�1�g 2 �.T /. That such a length
function is well-defined is a consequence of the invariance of the bilinear form under
the Weyl group.

Let v 2 V . Let S � V be a closed G-subvariety. Let jS; vj denote the set of all
1-parameter subgroups � of G such that the limt!0 �.t/ � v exists in S . The set jS; vj
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is non-empty if and only if S \ SOv ¤ ;; see [35, Theorem 1.4]. For � 2 jS; vj, let

M.�/WA1 ! V

be the unique morphism defined by M.�/.t/ D �.t/ � v for t ¤ 0 (where A1 denote
the 1-dimensional affine space). Let S denote a subvariety of V that is closed under
the action of G. Then, let aS;v.�/ denote the degree of the divisor M.�/�1S (which
is an effective divisor on A1). If jS; vj ¤ ;, the function � 7! aS;v.�/=k�k takes a
maximum value BS;v on jS; vj.

A 1-parameter subgroup � is called divisible if there exists another 1-parameter
subgroup � and a positive integer r � 2 such that �.t/ D �.t/r for all t 2 K�. A
1-parameter subgroup that is not divisible is called indivisible. When jS; vj ¤ ;, an
indivisible 1-parameter subgroup � 2 jS; vj is called optimal if aS;v.�/=k�k D BS;v .
We denote by ƒ.S; v/ the set of optimal 1-parameter subgroups.

For a 1-parameter subgroup �, we define the associated parabolic subgroup

P.�/ D
®
g 2 G j lim

t!0
�.t/g�.t�1/ 2 G

¯
:

We summarize the main technical results from [35, Section 3]).

Theorem 4.1. Let V be a rational representation of a reductive group G. Let v 2 V
such thatOv is not closed. Let S be a closedG-stable subvariety such thatOv \ S D
; and SOv \ S ¤ ;. Fix a choice of length function k k on �.G/. Let Gv denote the
stabilizer of v.

(1) The set ƒ.S; v/ of optimal 1-parameter subgroups is non-empty.

(2) There is a parabolic subgroupPS:v such thatP.�/DPS;v for all �2ƒ.S;v/.
We call PS;v the optimal parabolic subgroup.

(3) Any maximal torus of PS;v contains a unique member of ƒ.S; v/.

(4) Gv � PS;v .

4.1. Results on polystability

Using Theorem 4.1, we give a proof of Theorem 2.10.

Proof of Theorem 2.10. Suppose the orbit Ov is closed. Then, we claim that for any
torus T � H , the T -orbit OT;v is closed. To see this, consider the action of T on Ov .
For any g 2 G, the T -stabilizer at w D gv 2 Ov is given by T \ gGvg�1. Thus, the
dim.Tw/ � rank of any maximal torus in gGvg�1 = rank of H . Thus,

dim.T � v/ � dim.T � w/
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for any w 2 Ov . For the action of any reductive group on a variety, an orbit of the
smallest possible dimension must always be closed (since the boundary of an orbit,
if non-trivial, contains orbits of smaller dimension). In particular, for the action of T
on Ov , this means that T � v is closed.

Conversely, supposeOv is not closed. Then let S D SOv nOv . Then, let P WD PS;v
be the optimal parabolic subgroup as in Theorem 4.1. Since P � Gv by Theorem 4.1,
there exists T 2 T such that T is a maximal torus of P . Further, Theorem 4.1 says
that there is an optimal 1-parameter subgroup in T , which in the limit drives v out of
its G-orbit (and hence out of its T -orbit). Thus, the T -orbit of v is not closed for this
particular T .

To use Theorem 2.10, one must be able to compute Gv or at least a maximal torus
of it. Such a computation may not always be possible. In that case, one can use:

Theorem 4.2. Let V be a rational representation of a reductive group G. Let v 2 V
and let Gv D ¹g 2 G j gv D vº. Let T be a subset of maximal tori of G such that for
every parabolic P � Gv , there exists T 2 T such that T � P . Then,

OG;v is closed ” OT;v � OG;v 8T 2 T :

Proof. If OG;v is closed, then clearly OT;v � OG;v 8T 2 T . Now, suppose OG;v is
not closed. Then, consider PS;v , where S D SOv n Ov . Then PS;v � Gv by part (4)
of Theorem 4.1. Thus, there exists T 2 T such that T � PS;v . Hence, by part (3) of
Theorem 4.1, there must be a 1-parameter subgroup � of T which is optimal, so

lim
t!0

�.t/v D w … OG;v:

Hence, w 2 OT;v nOG;v , as required.

The obvious issue here is that we have to be able to tell when the closure of OT;v
is contained in OG;v . It would be simplest if OT;v is itself closed. If that is not the
case, then the following is one way to test whether OT;v � OG;v

Lemma 4.3. Let V be a representation of G and let T be a maximal torus. Let E D

.e1; : : : ; en/ be a weight basis for the action of T on V such that T acts on ei by a
weight �.i/. Then, let v D .v1; : : : ; vn/ be the coordinates of V in the basis E . Let
w D ess.v/. Then,

OT;v � OG;v” dim.Gw/ D dim.Gv/:

Proof. Suppose OT;v � OG;v , then clearly w 2 OG;v , so

dim.Gw/ D dim.Gv/
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since Gw and Gv are conjugate subgroups. On the other hand, suppose OT;v ª OG;v .
Let Y D OG;v . Now A D OT;v is a Zariski-closed subset of Y and B D OG;v is a
Zariski-open subset of Y and its complement Bc D Y n B is a Zariski-closed subset.
Thus, A \ Bc is a Zariski-closed subset of Y which is T -stable (i.e., a union of T -
orbits). In particular, this means that w D ess.v/ 2 A \ Bc since any Zariski-closed
T -stable subset of OT;v contains w. Since w 2 OG;v nOG;v , we get that

dim.Gw/ > dim.Gv/:

It is another matter that it may be quite hard to computeGw orGv completely. Yet,
one can decide if dim.Gw/ D dim.Gv/. In characteristic zero, a Lie algebra compu-
tation will suffice and in characteristic p > 0, one can use Gröbner basis techniques;
see, for example, [8, Chapter 9].

4.2. Results on semistability

To detect polystability, we used Theorem 4.1 with S D SOv nOv . To detect semistabil-
ity, one has to take S D ¹0º instead. Unlike the case of polystability, there is no need
for variants, we state the most general version possible. The proofs are very similar to
the previous subsection, so we leave the details to the reader.

Theorem 4.4. Let V be a rational representation of a reductive group G. Let v 2 V
and define Gv WD ¹g 2 G j gv D vº. Let T be a subset of maximal tori of G such that
for every parabolic P � Gv , there exists T 2 T such that T � P . Then we have

v is G-semistable” v is T -semistable for all T 2 T :

4.3. Improvements

In the case when the action of G on V extends to a larger group zG containing G as
a normal subgroup, we can make certain improvements to Theorem 4.2 and Theo-
rem 4.4. These improvements are very handy in computations, especially in the case
where G is the special linear group and zG is the general linear group.

First, we prove the following result that generalizes part (4) of Theorem 4.1.

Proposition 4.5. Let zG be an algebraic group and let G be a reductive normal sub-
group. Let V be a rational representation of zG and hence of G as well. Suppose that
v 2 V and let S D OG;yv be the unique closed G-orbit in SOG;v . Fix a choice of length
function k k on �.G/ and let PS;v be the optimal parabolic subgroup. Then

hPS;vh
�1
D PS;v for all h 2 zGv:
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Proof. For h 2 zG and � 2 �.G/, we define h � � by

h � �.t/ D h�.t/h�1;

which is a 1-parameter subgroup of G because G is normal in zG. Clearly, jhS; hvj D
h � jS; vj.

Now, suppose h 2 zGv . Then we get

jhS; vj D jhS; hvj D h � jS; vj ¤ ;:

Moreover, observe that hS D hOG;yv D OG;hyv since G is normal in zG. In particular,
this means that hS is a closed G-orbit. Since jhS; vj is not empty, hS must be the
unique closed orbit in SOG;v , so hS D S . This means

jS; vj D h � jS; vj;

which implies immediately that hPS;vh�1 D PS;v .

By using the above proposition instead of part (4) of Theorem 4.1, we get the foll-
owing improvement of Theorem 4.2 and Theorem 4.4.

Theorem 4.6. Let zG be an algebraic group and let G be a reductive normal sub-
group. Let V be a rational representation of zG and hence of G as well. Let v 2 V
and define zGv WD ¹g 2 zG j gv D vº. Let T be a set of maximal tori of G such that
for every parabolic P with gPg�1 D P for all g 2 zGv , there exists T 2 T such that
T � P . Then we have

(1) v is G-polystable” OT;v � OG;v for all T 2 T ;

(2) v is G-semistable” v is T -semistable for all T 2 T .

Proof. Let us first prove part (1). The H) implication is clear. We now prove the
backwards implication by proving the contrapositive. Suppose v is not G-polystable.
Let S DOG;w be the unique closed orbit inOG;v . Then consider PS;v , which satisfies

gPS;vg
�1
D PS;v

for all g 2 zGv by Proposition 4.5. Thus, there exists T 2 T such that T �PS;v . Hence,
for some one-parameter subgroup � of T we have limt!0 �.t/v … OG;v . Thus,

lim
t!0

�.t/v 2 OT;v nOG;v;

so we get OT;v ª OG;v .
The second part is analogous, where you take instead S D ¹0º, which is indeed

the unique closed orbit in OG;v if v is not semistable.
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5. Representations of (products) of special linear groups

In this section, we collect a few results that will help with explicit computations when
the acting group is a special linear group or a product of special linear groups. We
first recall briefly the connection between parabolic subgroups of SL.V / and flags
in V . Then, we discuss flags of H -stable subspaces of V for a special class of sub-
groups H � SL.V / for which V is a semisimple H -module. This will be very useful
for computations. Finally, we give a quick proof of Theorem 2.12 on the semistabil-
ity/polystability of entirely even polynomials.

5.1. Parabolic subgroups of SL.V /

The results in the above section warrant a brief discussion about parabolic subgroups
and their maximal tori so that one can use them for computational purposes. We state
results without proof referring the reader to standard texts [24, 25, 56] for details.

Let V be an n-dimensional vector space. A flag F is a sequence of subspaces

0 D F0 � F1 � F2 � � � � � Fk D V:

We do not restrict the dimensions of Fi , the inclusions force them to be an increasing
sequence. Associated to a flag is a parabolic subgroup PF of SL.V / defined by

PF D ¹g 2 SL.V / j gFi D Fi 8i 2 Œk�º:

The subspaces Fi , 1 � i � k are exactly the subspaces fixed by PF . In particular, if

F W ¹0º D F0 � F1 � � � � � Fk D V and F 0W ¹0º D F 00 � F
0
1 � � � � � F

0
l D V

are flags with strict inclusions and PF D PF 0 , then F D F 0.
To each basis B D .b1; : : : ; bn/ of V , we define a maximal torus TB of V con-

sisting of all g 2 SL.V / such that each bi is an eigenvector when viewing g as a
linear transformation from V to V . Clearly, permuting the basis does not change TB .
Using the basis B, one can identify V with Kn and consequently SL.V / with SLn.
Under this identification, TB is just the standard diagonal torus, i.e., the subgroup of
all diagonal n � n matrices (with determinant 1).

A basis B D .b1; : : : ; bn/ is called compatible with the parabolic PF if each Fi
is a coordinate subspace in the basis B, i.e., it is spanned by a subset of the basis.
In this case, we will also say B is compatible with the flag F . For a basis B that is
compatible with a parabolic PF , the maximal torus TB � PF . Further, all maximal
tori of PF arise from a compatible basis.

If
G D SL.V1/ � SL.V2/ � � � � � SL.Vk/;
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then any parabolic subgroup P of G is of the form

P D P .1/ � P .2/ � � � � � P .k/;

where each P .i/ is a parabolic subgroup of SL.Vi /. Thus, a collection of flags F D

.F .1/; : : : ;F .k// defines a parabolic subgroup for G. A maximal torus T of PF is a
product of maximal tori T D T .1/ � � � � � T .k/, where each T .i/ is a maximal torus
for Vi . Thus, a collection of compatible basis B D .B.1/; : : : ;B.k//, where each B.i/

is a basis of Vi , defines a maximal torus of PF .

5.2. Complete reducibility

In order to use the results in the previous section, we often want to investigate para-
bolic subgroups containing the isotropy subgroup of a point. If the group acting is
GL.V / or SL.V /, this amounts to investigating flags of subspaces stable under the
isotropy subgroup. Hence, in this section, we collect a few results on flags of H -
stable subspaces in V for some subgroup H � GL.V / in the special case where V is
a semisimple H -module, i.e., V is completely reducible as an H -module.

Remark 5.1. The notion of G-complete reducibility was introduced by Serre [53].
For a reductive group G, a (closed) subgroup H is called G-completely reducible
(G-cr for short) if for every parabolic subgroup P of G that contains H , there exists
a Levi subgroup of P that containsH . For G D GL.V /, a subgroup H is G-cr if and
only if V is a semisimpleH -module. In particular, ifH is linearly reductive (for e.g.,
a torus or a finite group whose order is not a multiple of the characteristic), then it is
automatically G-cr for G D GL.V /.

For this section, let G D GL.V / and let H be a G-cr subgroup of G, i.e., V is a
semisimple H -module. We have a decomposition into isotypic components

V D E1 ˚E2 ˚ � � � ˚Er ;

where each Ei Š V
mi

i for some irreducible representation Vi of H (where Vi and Vj
are non-isomorphic for i ¤ j ). Let dim.Vi /D ni . For each i , identifyEi D Vi ˝Kmi .

Definition 5.2. LetW1; : : : ;Wr be vector spaces and let U D˚iWi . For a collections
of flags F .i/ of Wi , we define their direct sum F D ˚F .i/, a flag of U by setting
Fj D ˚iF

.i/
j for all j .

Lemma 5.3. Let F D 0� F1 � F2 � � � � � Ft D V be a flag ofH -stable subspaces.
For each i , the restricted flag

F jEi
WD 0 � F1 \Ei � F2 \Ei � � � � � Ft \Ei D Ei

is a flag of H -stable subspaces of Ei . Further, F D ˚iF jEi
.
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Proof. This follows from the fact that anyH -stable subspaceW of V has the property
that W D ˚i .W \Ei / (which follows from complete reducibility).

The crucial point that comes from the above lemma is that to understand flags of
H -stable subspaces of V , we can study each isotypic component separately and the
following corollary is immediate.

Corollary 5.4. Let F D 0�F1�F2� � � � �Ft DV be a flag ofH -stable subspaces.
For each i , let Bi be a compatible basis for each F jEi

. Then [iBi is a compatible
basis for F .

5.3. Polystability for polynomials

In this section, we give a quick proof of Theorem 2.12.

Proof of Theorem 2.12. Recall that char.K/ ¤ 2. Let x1; : : : ; xn denote the standard
basis ofKn. Let f 2W D Sd .Kn/ be an entirely even polynomial. We want to apply
Theorem 4.6. Let G D SLn and

zG D ¹A 2 Matn;n j det.A/ D ˙1º � GLn

acting onW in the natural way. Consider the action of the group ¹˙1ºn (i.e., .Z=2/n)
on Kn given by

.t1; : : : ; tn/ � .v1; : : : ; vn/ D .t1v1; : : : ; tnvn/:

This action is given a map .Z=2/n ! zG. Let the image of this map be H . It is easy
to see that H � zGf .

We want to apply Theorem 4.6. So, now we claim that T D ¹STnº satisfies the
hypothesis of Theorem 4.6. Indeed, observe that if P D PF is a parabolic such that
gPg�1 D P for all g 2 zGf , then we have

PgF D gPg
�1
D P D PF

for all g 2 H . As noted in Section 5.1 this means that gF D F for all g 2 H , so F

is a flag of H -stable subspaces. Now, observe that H -stable subspaces are precisely
coordinate subspaces.8 Thus, F is a flag of coordinate subspaces, which means that
the standard basis is compatible with it, so STn � P D PF .

Thus, we apply Theorem 4.6 to get that f is G-polystable if and only if f is
STn-polystable and that f is G-semistable if and only if f is STn-semistable. The
theorem now follows from Corollary 3.2.

8This requires char.K/ ¤ 2. Note that if char.K/ D 2, then H is the trivial subgroup.
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6. Closed orbits for degree lower bound purposes

Before we go into the computational details, we need one quick observation.

Remark 6.1. Let W be a rational representation of a reductive group G and let T be
a maximal torus. Let w 2 W . Then w is gTg�1 polystable/semistable/stable if and
only if g�1w is T -polystable/semistable/stable.

Let G D SL.V / with a preferred basis E D ¹e1; : : : ; enº. For any basis B D

.b1; : : : ; bn/, we associate a maximal torus TB consisting of all matrices which are
diagonal with respect to this basis. Equivalently,

TB D ¹g 2 SL.V / j 8i; bi is an eigenvector for gº:

We denote by T , the maximal torus TE . LetLB be the linear transformation that sends
ei 7! bi . Then,

TB D LBTL
�1
B :

Finally, for some representation W of SL.V /, we have that w is TB polystable/semi-
stable/stable if and only if L�1

B
w is TE polystable/semistable/stable.

6.1. Closed orbit for cubic forms

Let E D ¹xi ; yi ; ziº1�i�n be the preferred basis for a 3n-dimensional vector space V .
Let W D S3.V /˚2 with the natural action of G D SL.V /. Let

w D

�X
i

x2i zi ;
X
i

y2i zi

�
2 W:

Proposition 6.2. The point w 2 W is SL.V /-polystable.

Consider the action of an n-dimensional torus .K�/n on V given by

.t1; : : : ; tn/ � xi D tixi ; .t1; : : : ; tn/ � yi D tiyi ; .t1; : : : ; tn/ � zi D t
�2
i zi :

There is also an action of Sn on V that permutes the xi , yi , zi , i.e.,

� � xi D x�.i/; � � yi D y�.i/; � � zi D z�.i/:

Combining the two actions, we get a map �W .K�/n Ì Sn ! SL.V / � GL.V /. Let
H WD �..K�/n Ì Sn/ � GL.V /. Let

X D span¹xi W i 2 Œn�º; Y D span¹yi W i 2 Œn�º; Z D span¹zi W i 2 Œn�º:

Lemma 6.3. V is a semisimple H -module.
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Proof. All we need to do is to write V as a direct sum of irreducible H -modules.
ClearlyX ˚Y ˚ZD V , so it suffices to show that each ofX;Y andZ are irreducible
H -modules. Let us do this for X . The others are similar. Suppose 0 ¤ U ¨ X was
a H -submodule. So, U must be stable under the action of the torus .K�/n (which is
linearly reductive), which means thatU must be span¹xi W i 2 I º for some ;¤ I ¨ Œn�.
But then, U must also be stable under the action of Sn, which is not possible. Thus,
no such U exists and X is irreducible.

In the above proof, observe that X and Y are isomorphic H -modules, so we con-
clude the following:

Corollary 6.4. Let P D span¹xi ; yi W i 2 Œn�º andQ D span¹zi W i 2 Œn�º. Then V D
P ˚Q is the isotypic decomposition of V with respect to H .

We now turn to finding compatible basis for flags of H -stable subspaces. First,
for a 2 K, let us define Ba WD ¹xi C ayi ; yi ; zi W 1 � i � nº.

Lemma 6.5. Let F be a flag of H -stable subspaces of V . Then there exists a 2 K
such that Ba is a compatible basis for F .

Proof. By Corollary 5.4, to find a compatible basis for F , it suffices to find a com-
patible basis for F jP and F jQ separately. Since Q itself is irreducible, the flag F jQ

must be trivial and any basis will do. We pick ¹z1; : : : ; znº.
Each space in the flag F jP is an H -stable subspace of the isotypic component

P Š X˚2 Š X ˝K2

and must be of the form X ˝ C for some subspace C � K2. If C is 1-dimensional,
then C is spanned by a vector

�
1
a

�
and xi C ayi , 1 � i � n is a basis of X ˝ C . A

compatible basis for F jP is ¹xi C ayi ; yi W 1 � i � nº, and we conclude that

Ba D ¹xi C ayi ; yi ; zi W i 2 Œn�º

is a compatible basis for F D F jP ˚ F jQ by Corollary 5.4.

Lemma 6.6. The point w is TE -polystable.

Proof. Write w D .w1;w2/. Then w1 D
P
i x
2
i zi and w2 D

P
i y
2
i zi are both weight

decompositions. Further, it is an easy check to see that the sum of weightsX
i

wt.x2i zi /C wt.y2i zi / D 0;

which means that 0 is in the relative interior of the weight polytope, and so w is
TE -polystable.
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Lemma 6.7. For all a 2 K, w is TBa
-polystable.

Proof. Let La be the linear transformation that takes xi 7! xi C ayi and keeps yi ; zi
invariant for all i . It suffices to prove that L�1a .w/ D L�a.w/ is TE -polystable by
Remark 6.1. Observe that L�a sends

x2i zi 7! x2i zi � 2axiyizi C a
2y2i zi and y2i zi 7! y2i zi :

Observe that
wt.xiyizi / D

1

2
wt.x2i zi /C

1

2
wt.y2i zi /:

This means that the weight polytope of L�a.w/ is the same as the weight polytope
of w (even though the weights occurring in their weight decompositions may not
be the same). Since weight polytopes determine polystability (see Lemma 3.3) we
conclude that L�a.w/ is TE -polystable since w is TE -polystable.

Now, we combine all the results to prove Proposition 6.2

Proof of Proposition 6.2. We want to use Theorem 4.6. Take G D SL.V / and zG D
GL.V /. Then clearly we haveH � zGv , whereH is defined as in the beginning of this
section. Now, suppose we have a parabolic PF that is fixed by all elements of zGv . In
particular, it is fixed by all elements ofH , so F must be a flag ofH -stable subspaces.
Hence, for some a, the basis Ba is compatible with F by Lemma 6.5. In short this
means that the collection T D ¹TBa

j a 2Kº satisfies the hypothesis of Theorem 4.6.
Since w is TBa

-polystable for all a 2 K by Lemma 6.7, we get that

OT;w D OT;w � OG;w

for all T 2 T . Thus, by Theorem 4.6, we conclude that w is G-polystable.

6.2. Closed orbits for tensor actions

The idea is very much similar to the one on cubic forms, but the computations get a
little bit cumbersome. Yet, spotting certain patterns will make the computation much
easier. For this section, let U; V;W be a 3n-dimensional spaces with basis

¹u
.k/
i j 1 � i � 3; 1 � k � nº;

¹v
.k/
i j 1 � i � 3; 1 � k � nº; ¹w

.k/
i j 1 � i � 3; 1 � k � nº;

respectively. Consider the action of SL.U / � SL.V / � SL.W / on .U ˝ V ˝W /˚4.
Let F D .F1; F2; F3; F4/ 2 .U ˝ V ˝W /˚4, where

F1 D

nX
kD1

u
.k/
1 v

.k/
2 w

.k/
3 C u

.k/
2 v

.k/
3 w

.k/
1 C u

.k/
3 v

.k/
1 w

.k/
2 ;
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F2 D

nX
kD1

u
.k/
2 v

.k/
1 w

.k/
3 C u

.k/
1 v

.k/
3 w

.k/
2 C u

.k/
3 v

.k/
2 w

.k/
1 ;

F3 D

nX
kD1

u
.k/
1 v

.k/
1 w

.k/
3 C u

.k/
2 v

.k/
3 w

.k/
2 C u

.k/
3 v

.k/
1 w

.k/
1 ;

F4 D

nX
kD1

u
.k/
2 v

.k/
2 w

.k/
3 C u

.k/
1 v

.k/
3 w

.k/
1 C u

.k/
3 v

.k/
2 w

.k/
2 :

Proposition 6.8. The point F 2 .U ˝ V ˝W /˚4 is SL.U /� SL.V /� SL.W /-poly-
stable.

Let us define a map �U W ..C�/3/n ! GL.U /. To define such a map it suffices to
understand the action of t D .p1; q1; r1;p2; q2; r2; : : : ;pn; qn; rn/ on each basis vector
b 2 Bu. The map �U is defined by

�U .t/u
.k/
1 D pku

.k/
1 ; �U .t/u

.k/
2 D pku

.k/
2 ; �U .t/u

.k/
3 D .qkrk/

�1u
.k/
3 :

Similarly, define �V W ..C�/3/n ! GL.V / by

�V .t/v
.k/
1 D qkv

.k/
1 ; �V .t/v

.k/
2 D qkv

.k/
2 ; �V .t/v

.k/
3 D .pkrk/

�1v
.k/
3 :

Finally, define �W W ..C�/3/n ! GL.W / by

�W .t/w
.k/
1 D rkw

.k/
1 ; �W .t/w

.k/
2 D rkw

.k/
2 ; �W .t/w

.k/
3 D .pkqk/

�1w
.k/
3 :

Let � D .�U ; �V ; �W /W ..C�/3/n! GL.U /�GL.V /�GL.W /. There is also an
action of Sn on U; V and W defined by

�.u
.k/
i / D u

.�.k//
i ; �.v

.k/
i / D v

.�.k//
i ; �.w

.k/
i / D w

.�.k//
i ;

respectively. That action gives a map  WSn! GL.U /�GL.V /�GL.W /. When put
together, we get a map � Ì  W ..C�/3/n Ì Sn ! GL.U / � GL.V / � GL.W /. Let H
denote the image of � Ì  .

Lemma 6.9. U; V;W are all semisimple H -modules.

Proof. We will only prove this for U , the others are similar. For i D 1; 2; 3, let

Xi D span
�
u
.k/
i W k 2 Œn�

�
:

Then, Xi is an irreducible representation of H , which can be seen by an argument
similar to the one in the proof of Lemma 6.3. Clearly,

X1 ˚X2 ˚X3 D U;

so U is semisimple.
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Moreover, observe that in the proof of the above lemma, X1 Š X2 © X3. In par-
ticular, the isotypic decomposition of U D P ˚X3, where P DX1˚X2. For a 2K,
define the basis

BU;a D
®
u
.k/
1 C au

.k/
2 ; u

.k/
2 ; u

.k/
3 j k 2 Œn�

¯
of U . In studying flags of H -stable subspaces of U , the situation is similar to that of
Lemma 6.5. Hence, we can conclude that for any flag of H -stable subspaces of U ,
there is a compatible basis of the form BU;a for some a 2 K. Similar arguments hold
for V and W , where BV;b and BW;c for b; c 2 K are defined analogously. We define

Ba;b;c D BU;a ˝BV;b ˝BW;c

D ¹z ˝ z0 ˝ z00 jz 2 BU;a; z
0
2 BV;b; z

00
2 BW;cº:

From the above discussion, we conclude:

Lemma 6.10. Suppose .F1;F2;F3/ is a 3-tuple of H -stable of flags of U;V and W ,
respectively. Then, there exists a compatible basis of the form Ba;b;c

Let LaU be the linear transformation that sends u.k/1 7! u
.k/
1 C au

.k/
2 and leaves

u
.k/
2 and u.k/3 invariant. Note that .LaU /

�1 D L�aU . Similarly, define LbV and LcW . For
a; b; c 2 K, define

La;b;c D LaU ˝ L
b
V ˝ L

c
W WU ˝ V ˝W ! U ˝ V ˝W:

For S D .S1; : : : ; Sr/ 2 .U ˝ V ˝W /˚r , write each

Si D
X

d.i/
ka;kb ;kc

a;b;c
u.ka/
a v

.kb/

b
w.kc/
c :

Define the support

supp.Si / WD
®
u.ka/
a v

.kb/

b
w.kc/
c j d.i/

ka;kb ;kc

a;b;c
¤ 0

¯
and define the total support tsupp.S/ D [i supp.Si /.

Now, consider F D .F1; F2; F3; F4/ 2 .U ˝ V ˝W /˚4.

Lemma 6.11. Fix a; b; c 2 K, let L D La;b;c and let F 0 D L.F /. Then we have
tsupp.F / D tsupp.F 0/.

Proof. One way to prove this lemma is by brute force computation, for example, with
the use of a computer. However, we will give a proof by spotting key patterns. Let

C1;k D ¹u
.k/
1 v

.k/
2 w

.k/
3 ; u

.k/
2 v

.k/
1 w

.k/
3 ; u

.k/
1 v

.k/
1 w

.k/
3 ; u

.k/
2 v

.k/
2 w

.k/
3 º

D ¹u
.k/
i v

.k/
j w

.k/
3 j i; j 2 ¹1; 2ºº;

C2;k D ¹u
.k/
i v

.k/
3 w

.k/
j j i; j 2 ¹1; 2ºº;

C3;k D ¹u
.k/
3 v

.k/
i w

.k/
j j i; j 2 ¹1; 2ºº:



H. Derksen and V. Makam 378

Observe that each Fi is a sum of monomials, exactly one from each Ci;k . In partic-
ular, tsupp.F /D[i;kCi;k . Also, observe that L keeps the span of each Ci;k invariant.
Moreover, observe that for a monomial m 2 Ci;k , we have

L.m/ D mC
X

n2Ci;kn¹mº

�nn

for some scalars �n 2K. Now, supposem occurs in Fj , then as observed above, none
of the monomials in Ci;k n ¹mº occur in Fj . This means that

supp.Fj / � supp.L.Fj // � tsupp.F /:

Since this holds for arbitrary j , we have tsupp.L.F // D tsupp.F / as required.

Lemma 6.12. The point F is TE -polystable.

Proof. The argument is similar to the one in the proof of Lemma 6.6 since a convex
combination of weights in the weight space decomposition is 0; see e.g., the compu-
tation in the proof of [16, Proposition 8.1].

Lemma 6.13. The point F is TBa;b;c
-polystable for all a; b; c 2 K.

Proof. To check that F is TBa;b;c
-polystable, it suffices to check that L.F / is TE -

polystable, where L D L�a;�b;�c . Lemma 6.11 shows that both F and L.F / have
the same weight sets and hence the same weight polytopes, so L.F / is TE -polystable
since F is by the above lemma.

Proof of Proposition 6.8. This is very similar to the proof of Proposition 6.2. Using
similar arguments, we see that the collection T D ¹TBa;b;c

W a; b; c 2 Kº satisfies
the hypothesis of Theorem 4.6 and so by Lemma 6.13, we conclude that F is G-
polystable. We leave the details to the reader.

7. Degree lower bounds via Grosshans’ principle

In this section, we discuss our method to prove lower bounds, in particular we give a
proof of Theorem 2.7. Then, using Theorem 2.7 along with the results on polystability
from the previous section, we give a proof of Theorems 2.8 and 2.9.

The following lemma is crucial for our purposes; see [3, Lemma 3.3].

Lemma 7.1. Let V be a rational representation of a reductive groupG and let v 2 V
and let H D Gv WD ¹g 2 G j gv D vº.

� The natural map G=H ! G � v is a homeomorphism, and an isomorphism of
varieties if and only if the orbit map G ! Ov is separable.

� Ov is affine if and only if G=H is affine if and only if H is reductive.



Polystability in positive characteristic and degree lower bounds for invariant rings 379

Moreover, observe that whenG=H is affine, it is clearly a categorical quotient and
hence its coordinate ring is equal to KŒG�H .

Let V; W be rational representations of a reductive group G. Let v 2 V such
that Ov is closed. Let H D Gv . Since the orbit of v is closed, H is a closed reductive
subgroup. Consider the following three morphisms of affine varieties. The first map is

�WW ,! G=H �W;

w 7! .eH;w/:

The second map is

� WG=H �W ! Ov �W;

.gH;w/ 7! .gv;w/:

The last map is just the closed embedding

j WOv �W ,! V �W:

Composing the three maps, we get � WD j ı � ı �WW ! V �W given by w 7!
.v; w/. For any morphism  between affine varieties, we denote by  � the corre-
sponding map on coordinate rings in the other direction.

Lemma 7.2. The map �� is degree non-increasing, i.e., if f 2 KŒV �W �, then

deg.f / � deg.��.f //:

Proof. This is straightforward.

Proposition 7.3. The map �� restricts to a map on invariant rings

KŒV �W �G ! KŒW �H :

Proof. For h 2 H and w 2 W , we see that �.hw/ D .v; hw/ and �.w/ D .v;w/ are
in the same G-orbit because

h � .v; w/ D .hv; hw/ D .v; hw/;

which follows because H D Gv . Thus, � maps H -orbits into G-orbits. Hence, any
G-invariant function pulls back under �� to a H -invariant function.

Proposition 7.4. Let ¹fi W i 2 I º be a separating subset of invariants for the action
of G on V � W . Then ¹��.fi / W i 2 I º is a separating subset of invariants for the
action of H on W .
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Proof. Observe that �� D �� ı �� ı j �. First, j is just the restriction to a closed
G-stable subset and � is a homeomorphism, so ¹�� ı j �.fi / W i 2 I º is a separating
subset for the action of G on G=H �W . But now, Grosshans’ principle gives us an
isomorphism

��WKŒG=H �W �G
�
�! KŒW �H ;

which means that the categorical quotients .G=H �W /�G ŠW �H , so a separat-
ing subset for the action of G on G=H �W gives a separating subset for the action
of H on W via the map ��.

Proof of Theorem 2.7. From Lemma 7.2 and Proposition 7.4, we get

ˇsep.G; V �W / � ˇsep.H;W /:

The other two inequalities are straightforward; see equation (1).

7.1. Null cone bounds for non-connected reductive groups

In order to prove degree lower bounds for one action, our strategy is essentially to
reduce it to bounds for invariants defining the null cone of a related action. However,
for this strategy to work, we need to start somewhere, i.e., be able to prove exponential
lower bounds for invariants defining the null cone for some action. As mentioned in
the introduction, it is relatively easier to prove null cone bounds for torus actions.
Hence, we want to look for a point with a closed orbit whose stabilizer is a torus. On
the other hand, having a significant finite group in the stabilizer can greatly simplify
and ease the computations needed to prove that the point in question has a closed
orbit. Thus, we find points with closed orbits whose stabilizers are not a torus, but the
extension of a torus by a finite group. However, this brings a new problem, i.e., we
now need to understand null cone bounds for groups that are a little more general than
tori. In this subsection, we will show that the finite group part does not affect the null
cone bound adversely.

Proposition 7.5. Let V be a rational representation of a reductive group G. Let Gı

denote the identity component of G. Then, �.G; V / � �.Gı; V /.

Proof. The Hilbert–Mumford criterion, (see e.g., [43] or [11, Theorem 2.5.3]) can be
formulated in the following way – the null cone for the action of a reductive group
is the union of null cones for all of its maximal tori. Since maximal tori for G are
precisely the maximal tori for Gı, we conclude that the null cone for the action of G
and Gı on V are the same. Let

N WD N .G; V / D N .Gı; V /:



Polystability in positive characteristic and degree lower bounds for invariant rings 381

By definition of �.G;V /, there exist f1; : : : ;fr2KŒV �G such that V .f1; : : : ; fr/DN

with
max¹deg.fi /º D �.G; V /:

This means that f1; : : : ; fr are Gı-invariant functions that cut out the null cone
N .Gı; V /. Thus, �.Gı; V / � max¹deg.fi /º D �.G; V /.

7.2. Cubic forms

Assume char.K/ ¤ 2 for this subsection. Let V be a 3n-dimensional vector space
with preferred basis E D ¹xi ; yi ; ziº1�i�n as in Section 6.1. Consider the action of
G D SL.V / on S3.V /, and the diagonal action of SL.V / onW D S3.V /˚2. Consider

w D

�X
i

x2i zi ;
X
i

y2i zi

�
2 W ˚2:

Then, by Proposition 6.2, we know thatOw is closed. So, in order to use Theorem 2.7,
we need to compute Gw . Consider the action of the n-dimensional torus on V as
follows. For t D .t1; : : : ; tn/ 2 .C�/n, we have

txi D tixi ; tyi D tiyi ; tzi D t
�2
i zi :

This action gives a map  W .C�/n ! SL.V /. Let L WD  ..C�/n/.

Lemma 7.6. Let g 2 Gw . Then gxi D cix�.i/; gyi D ˙ciy�.i/, and gzi D c�2i z�.i/
for some scalars ci 2 K and � 2 Sn.

Proof. The proof is the same as [16, Corollary 7.11], the proof of which uses [16,
Lemma 7.8] (a result which holds precisely when characteristic ¤ 2 as can be easily
seen from the proof).

Corollary 7.7. We have Gıw D L.

Proof. The above lemma associates a permutation � to each g 2Gw . That gives a map
which can easily be seen to be a group homomorphism, which we call �WGw ! Sn.
The kernel of � is precisely all the elements of Gw that keep xi ; yi ; zi invariant up to
scalars. Moreover, by the previous lemma, for g 2 ker.�/, the action is given by

gxi D cixi ; gyi D ˙ciyi ; gzi D c
�2
i zi

for some scalars ci 2K. Now, it is easy to see that ker.�/ contains L and the quotient
is a finite group (indeed just a subgroup of .Z=2/n). Since L is connected, we con-
clude that ker.�/ı D L. Clearly, since Gw is a finite extension of ker.�/, we deduce
that Gıw D L.
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Proof of Theorem 2.8. Since w D .
P
i x

2
i zi ;

P
i y

2
i zi / has a closed SL.V /-orbit, by

Theorem 2.7, we get that

ˇ.SL.V /; S3.V /˚3/ � �.Gw ; S3.V //:

But now, since Gıw D L, we get that

�.Gw ; S
3.V // � �.L; S3.V //

by Proposition 7.5. Since L is a torus, the degree bound on generators as well as the
bound on the degree of invariants defining the null cone only depend on the weight
set (and in particular is oblivious to the characteristic). The computation one needs to
do to obtain a lower bound on �.L; S3.V // is already done; see [16, Corollary 7.4],
where L for us is denoted H . Thus, we conclude

ˇ.SL.V /; S3.V /˚3/ � �.Gw ; S3.V // � �.L; S3.V // �
2

3
.4n � 1/:

7.3. Tensor actions

Let U , V , W be 3n-dimensional spaces with a preferred basis ¹u.k/i º, ¹v
.k/
i º, ¹w

.k/
i º,

respectively, as in Section 6.2. Consider the action ofG D SL.U /� SL.V /� SL.W /
on .U ˝ V ˝W /˚4. Let F D .F1; F2; F3; F4/ 2 .U ˝ V ˝W /˚4 as in Section 6.2,
which has a closed G-orbit.

We consider a slightly different group

J WD
®
.g1; g2; g3/ 2 GL.U / � GL.V / � GL.W / j det.g1/ det.g2/ det.g3/ D 1

¯
:

Both G and J are subgroups of GL.U / � GL.V / � GL.W / and act naturally on
.U ˝ V ˝W /˚r for r 2 Z>0. As shown in [16, Section 8], the orbits with respect to
both groups are precisely the same and hence so are the invariant rings. Moreover, J
is a reductive group by Matsushima’s criterion.

Now, we turn to computing the stabilizer JF , or rather its identity component.
Recall the map � defined in Section 6.2. Let L WD �...C�/3/n/.

Lemma 7.8. The subgroup H D J ıF , the identity component of the stabilizer of F .

Proof. By Kruskal’s uniqueness theorem [37] (see also [38]), any g 2 JF permutes
the terms in each of the Fi ’s. By a similar argument to the one in the case of cubic
forms, the subgroup of JF that fixes all monomials is of finite index in JF . But this
is precisely L by the same arguments as in [16, Lemma 8.11]. Since L is connected,
we must have J ıF D L.
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Proof of Theorem 2.9. This is similar to the proof of Theorem 2.8. We have

ˇ.G; .U ˝ V ˝W /˚5/ D ˇ.G; .U ˝ V ˝W /˚4 ˚ .U ˝ V ˝W //

D ˇ.J; .U ˝ V ˝W /˚4 ˚ .U ˝ V ˝W //

� �.JF ; U ˝ V ˝W /

� �.L;U ˝ V ˝W /

� 4n � 1:

The second equality follows from the fact that G-orbits and J -orbits are the same, so
the corresponding invariant rings are also the same. The first inequality follows from
applying Theorem 2.7 to the fact that F 2 .U ˝ V ˝W /˚4 has a closed orbit (by
Proposition 6.8). The second inequality follows from Proposition 7.5. The last follows
from the computation in [16, Corollary 8.5] (where L for us is denoted H ).

8. Polystability for symmetric polynomials

In this section, we discuss stability notions for symmetric polynomials, in particu-
lar we give an algorithm to determine whether a symmetric polynomial is unstable,
semistable, polystable, or stable. The techniques in this section go beyond the results
stated in Section 4. Roughly speaking, in Section 4, the high-level idea was to check
polystability (or similar) for a collection of maximal tori that covers all possible opti-
mal parabolic subgroups. In this section, we will take a closer look at the parabolic
itself and leverage that for a parabolic subgroup to be optimal, the associated optimal
one-parameter subgroup must take a very specific form. So, we first discuss some gen-
eralities on one-parameter subgroups and their associated parabolics and then proceed
to study the case of symmetric polynomials.

Let �WK� ! SL.V / be a 1-parameter subgroup. Such a 1-parameter subgroup
is diagonalizable, i.e., we have a basis v1; : : : ; vn of V (say V is n-dimensional)
such that �.t/vi D tˇivi for some ˇi 2 Z. Without loss of generality, we can take
ˇ1 � ˇ2 � � � � � ˇn. Of course, some of the inequalities can be equalities. So, we
must have

1 D k0 < k1 < k2 < � � � < kr D nC 1

such that ˇi D ǰ for all i; j 2 ¹ka�1; ka�1 C 1; : : : ; ka � 1º for any a 2 ¹1; : : : ; rº.
Let Fa denote the linear span of v1; v2; : : : ; vka�1. Let

F D 0 � F1 � F2 � � � � � Fr D V:

Then, the parabolic associated to � is P.�/ D PF . An illustrative example is the
following:
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Example 8.1. Let x1; x2; x3 denote the standard basis of K3. Consider the one-
parameter subgroup � of SL3 given by

�.t/ D

0B@t3 0 0

0 t3 0

0 0 t�6

1CA :
Consider the flag F D 0 � span¹x1; x2º � K3. Then,

P.�/ D PF D

0B@� � �

� � �

0 0 �

1CA � SL3 :

Definition 8.2. Let F D .0 D F0/ � F1 � � � � � .Fr D V / be a flag. We call a tuple
of subspaces G D .G1; : : : ;Gr/ a splitting of F if Fi�1 ˚Gi D Fi for all i . Observe
that˚iGi D V . Denote by �F the set of splittings of F .

Further, let c 2 Zr be such that
P
i ci dim.Gi / D 0. Then, we call .G; c/ a deco-

rated splitting of F . We call c a decoration for the splitting G.
Finally, for a decorated splitting .G; c/, we define an associated 1-parameter sub-

group � D �.G;c/ by �.t/v D tciv for v 2 Gi .

Lemma 8.3. Let F be a flag in V . Suppose � is a 1-parameter subgroup such that
P.�/ D PF . Then, there is a decorated splitting .G; c/ of F such that � D �.G;c/.

Proof. Take a basis v1; : : : ; vn of V such that �.t/vi D tˇivi for some ˇi 2 Z and
assume without loss of generality that ˇ1 � ˇ2 � � � � � ˇn. Let

1 D k0 < k1 < k2 < � � � < kr D nC 1

such that ˇi D ǰ for all i; j 2 ¹ka�1; ka�1 C 1; : : : ; ka � 1º for any a 2 ¹1; : : : ; rº.
Then P.�/ D PF means that Fa is the linear span of v1; v2; : : : ; vka�1 as explained
above (just before Example 8.1).

So, now let Ga to be the linear span of vka�1
; vka�1C1; : : : ; vka�1 and let

ca D ˇka�1
D ˇka�1C1 D � � � D ˇka�1:

It is now straightforward to check that � D �.G;c/.

Perhaps the most important result for this section is the following lemma.

Lemma 8.4. SupposeW is a representation ofG D SL.V / andw 2W such thatOw
is not closed. Let S be a closedG-stable subset such that S \Ow D; and S \ SOw ¤
;. Let F be a flag of V such that the optimal parabolic subgroup PS;w D PF . Then,
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there exists unique indivisible c D .c1; : : : ; cr/ 2 Zr with
P
i ci dim.Fi=Fi�1/ D 0

and c1 � c2 � � � � � cr such that the map

�F ! ƒ.S; v/;

G 7! �.G;c/

is a bijection between splittings and optimal 1-parameter subgroups.

Proof. Let G be a splitting. Then, take a basis B such that each Gi is a coordinate
subspace (i.e., span of a subset in B). Then, by Theorem 4.1, part (3), there is an
optimal 1-parameter subgroup contained in TB . Let us call that �. Fix 1 � i � r . Let
AWGi ! Gi be a linear transformation with determinant 1. Let L.A/WW !W be the
linear transformation that is identity on Gj for j ¤ i and agrees with Ai on Gi . It is
easy to see that L.A/�L.A/�1 is also an optimal 1-parameter subgroup in TB . Thus,
we must have

L.A/�L.A/�1 D �

for all A 2 SL.Gi /. It is straightforward to argue that this means there is ci 2 Z such
that �.t/vD tciv for all v 2Gi . In particular, this means that � does not depend on the
choice of B or TB but on just G itself. Thus, to each splitting G, we can associate a
unique �D �G;c 2ƒ.S;w/ (where a priori c depends onG). Note that c is indivisible
simply because � is optimal.

To show that c does not depend on the choice of G, we note that for any other
splitting G0, we have p 2 PS;w such that pG D G0. This means that

p�G;cp
�1
D �G0;c 2 ƒ.S;w/:

This means that the choice of c is independent of the choice of G.
To summarize, we have shown the existence of the map �F ! ƒ.S; v/. Injec-

tivity is clear because you can recover Gi from � uniquely as the subspace of V on
which �.t/ acts by tci . To show surjectivity is to show that any optimal 1-parameter
subgroup � 2 ƒ.S; w/ arises as �G;c for some splitting G and c. But this follows
from Lemma 8.3.

Remark 8.5. Suppose F is a 2-step flag, i.e., F D 0 � F1 � F2 D V and let c be as
in Lemma 8.4 above. Then c must be the indivisible integral vector that is a multiple
of .dim.V / � dim.F1/;� dim.F1//.

The following lemma is well known and the proof is left to the reader.

Lemma 8.6. Assume n � 2. Let x1; : : : ; xn denote the standard basis for Kn and
consider the natural action of Sn on Kn by permutation of x1; : : : ; xn. Then,

L D span.x1 C x2 C � � � C xn/ and M D
°X
i

˛ixi j
X
i

˛i D 0
±

are the only non-trivial Sn-stable subspaces of Kn.
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Corollary 8.7. Assume n � 2. Let char.K/ D p. Let x1; : : : ; xn denote the stan-
dard basis for Kn and consider the natural action of Sn on Kn by permutation of
x1; : : : ; xn. Let F be a flag of Sn stable subspaces. If p − n, then F must be one of:

� 0 � Kn;

� 0 � L � Kn;

� 0 �M � Kn.

If p j n, then F must be one of:

� 0 � Kn;

� 0 � L � Kn;

� 0 �M � Kn;

� 0 � L �M � Kn.

Note that when char.K/ D p D 2 and n D 2, then L DM . So, in this case, we only
have two possible flags instead of four.

It is quite crucial to realize that Corollary 8.7 is key to giving an algorithm for
detecting polystability. Indeed, this shows that one has very few choices for an optimal
parabolic subgroup, which narrows the search for an optimal one-parameter subgroup
(if it exists). The rest of this section is devoted to discussing the algorithm to detect
polystability of symmetric polynomials.

8.1. The case p − n

Assume n�2 for this subsection. LetL;M�Kn be the two non-trivial Sn-stable sub-
spaces as defined above. Then, it is easy to see that since p − n, we haveL˚M DKn.
In particular, this means that for the flag 0 � L � Kn, a splitting is .L;M/ and for
the flag 0�M �Kn, a splitting is .M;L/. Since both are 2-step flags, the decoration
is uniquely determined, it is .n � 1;�1/ in the first instance and .1;�.n � 1// in the
second instance. Let �can be the 1-parameter subgroup of SLn defined by

�can.t/ � v D

´
tn�1v if v 2 L;

t�1v if v 2M:
(2)

We call �can the canonical 1-parameter subgroup for symmetric polynomials (in the
case p − n).

Lemma 8.8. Let char.K/D p − n. Let f 2KŒx1; : : : ; xn�
Sn

d
be a degree d symmetric

polynomial. Then, f is not polystable if and only if one of the two conditions hold:

� limt!0 �can.t/ � f exists and is not in Of ;

� limt!1 �can.t/ � f exists and is not in Of .
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Further, f is unstable if and only if

lim
t!0

�can.t/ � f D 0 or lim
t!1

�can.t/ � f D 0:

Proof. Clearly if f is polystable, then the two limits either do not exist or must be
in Of .

Now, suppose f is not polystable, let S D SOf nOf . Consider the optimal para-
bolic subgroup PS;v . First, we claim that PS;v is not all of SLn. This is because then
PS;v D PF , where F D 0 � Kn. Hence, the only possible splitting is

G D .G1/ D .V /

(i.e., �F is a singleton set). Now, consider an optimal one-parameter subgroup � D
�.G;c/ as in Lemma 8.4. We must have c D .c1/ D 0 because

0 D
X
i

ci dimGi D c1 � n;

so �.t/ is the trivial one-parameter subgroup, i.e., �.t/ is the identity matrix for all t .
Thus,

lim
t!0

�.t/ � f D f;

which contradicts the assumption that f is not polystable and � is optimal.
Thus, PS;v D PF , where F is either 0 � L � Kn or 0 � M � Kn by Corol-

lary 8.7. In the former case .L;M/ is a splitting and by Remark 8.5, we see that �can

is an optimal one-parameter subgroup. In the latter case, .M; L/ is a splitting and
by Remark 8.5, ��1can is an optimal one-parameter subgroup. Thus, one of these two
one-parameter subgroups must drive f out of its orbit in the limit, as required.

The argument for unstable is analogous, where you replace S D SOf n Of with
S D ¹0º.

Suppose that p − n. For f 2 KŒx1; : : : ; xn�
Sn

d
, we can rewrite f as a polynomial

in l D
P
i xi and b1; : : : ; bn�1, where bi D xi � xiC1. In other words, we have

f D

dX
iD0

l ipi ; (3)

where pi is a polynomial in b1; b2; : : : ; bn�1.

Remark 8.9. We point out to the reader that we use p for characteristic and pi to
denote polynomials obtained by decomposing f in a specific way as indicated above.
These polynomials always come with a subscript which indicates their degree, so
there is no scope for confusion.
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Theorem 8.10. Let char.K/D p − n. Let f 2KŒx1; : : : ; xn�
Sn

d
. Write f D

P
i l
ipi ,

as described above. Then, f is unstable if and only if either

lbd=ncC1 j f or f D

dd=ne�1X
iD0

l ipi :

Further, if f is not unstable, then it is polystable unless the following conditions hold:

� n j d ;

� ld=npd=n … Of ;

� ld=n j f or f D
Pd=n
iD0 l

ipi .

Proof. Write f D
P
i l
ipi as in equation (3). We see that f is unstable precisely

when
lim
t!0

�can.t/f D 0 or lim
t!1

�can.t/f D 0:

Observe that

�can.t/f D
X
i

t .n�1/i�.d�i/l ipi D
X
i

tni�d l ipi :

This limit as t ! 0 is 0 if and only if ni � d > 0 for all i such that pi ¤ 0. In other
words, pi ¤ 0 H) i > d=n, i.e., i � bd=nc C 1 since i must be an integer. Thus,
lbd=ncC1 j f . Similarly, the limit as t !1 is 0 if and only if

f D

dd=ne�1X
iD0

l ipi :

If f is not unstable, then it is semistable. Suppose f is not polystable, then one
of limt!0 �can.t/f and limt!1 �can.t/f exists and is not in Of .

Let us first suppose limt!0 �can.t/f exists and is not in Of . If n − d , for any i ,
we must have

ni � d < 0 or ni � d > 0:

For limt!0 �can.t/f to exist, we must have pi D 0 whenever ni � d < 0. Further, if
ni � d > 0, then tni�d l ipi will go to 0 in the limit, i.e., 0 2 SOf , so f is unstable,
which is a contradiction. Hence, we must have n j d and that ld=n j f (since pi D 0
whenever ni � d < 0). Further, in this case, the limit is precisely ld=npd=n.

The case limt!1 �can.t/f exists and is not in Of is similar except we replace
ld=n j f by f D

Pd=n
iD0 l

ipi .

The above results translate into the following algorithm.

Algorithm 8.11. Now we give an algorithm that decides whether a symmetric poly-
nomial is unstable/semistable/polystable/stable in the case p − n.



Polystability in positive characteristic and degree lower bounds for invariant rings 389

Input. f 2 KŒx1; : : : ; xn�d .

Step 1. Write f D
P
i l
ipi .

Step 2. If lbd=ncC1 j f or f D
Pdd=ne�1
iD0 l ipi , then f is unstable. Else, proceed to

Step 3.

Step 3. If n − d , then f is polystable. Further, in this case, if dim.SL.V /f / D 0,
then f is stable. If n j d , proceed to Step 4.

Step 4. Check if ld=n j f or f D
Pd=n
iD0 l

ipi . If neither holds, then f is polystable.
Further, in this case, if dim.SL.V /f /D 0, then f is stable. If one of ld=n j f
or f D

Pd=n
iD0 l

ipi hold, then go to Step 5.

Step 5. Let f 0 D ld=nfd=n. If dim.SL.V /f 0/ D dim.SL.V /f /, then f is polystable
and in this case if dim.SL.V /f / D 0, then f is stable. If dim.SL.V /f 0/ ¤
dim.SL.V /f /, then f is semistable, but not polystable.

Most of the steps in the above algorithm are fairly straightforward from an algo-
rithmic perspective, especially since we do not worry about complexity issues. The
only non-trivial step is the computation of dim.SL.V /f / and dim.SL.V /f 0/. These
can be computed by Gröbner basis techniques; see [8, Chapter 9]. In characteristic
zero, these can actually be computed by computing the dimensions of their Lie alge-
bras, which is a linear algebraic computation.

8.2. The case p j n

Recall from Corollary 8.7 that there are essentially four possible flags of Sn-stable
subspaces. It is easy to observe that 0 � L � M � Kn refines all such flags. We
can take advantage of this fact to reduce the problem of testing polystability for a
symmetric polynomial to a problem on a 2-dimensional torus (and a computation of
the stabilizer).

Lemma 8.12. Suppose that char.K/ D p j n. Let

0 ¤ f 2 V D KŒx1; : : : ; xn�
Sn

d
:

Let B D .l; b1; b2; : : : ; bn�2; c/ be a basis of Kn, where

l D x1 C � � � C xn:

Let bi D xi � xiC1 for i D 1; 2; : : : ; n � 2 and let c D xn. Let T2 D .K�/2 denote
the 2-dimensional torus acting on Kn by

t � l D t1l; t � bi D t2bi
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for all i and
t � c D t�11 t

�.n�2/
2 c:

Let w D ess.f / denote a point in the unique closed orbit of OT2;f . Then

� f is polystable if and only if dim..SLn/f / D dim..SLn/w/;

� f is semistable if and only if w ¤ 0.

Proof. Let S be a non-empty closed SLn-stable subset of V such that S \OSLn;f D;

and S \ OSLn;f ¤;. Then, let PS;f be the optimal parabolic subgroup. Now,
PS;f D PF for some flag F of Sn-stable subspaces of Kn. By Corollary 8.7, there
are four possibilities:

� 0 � Kn;

� 0 � L � Kn;

� 0 �M � Kn;

� 0 � L �M � Kn.

The first is ruled out by the same argument as in Lemma 8.8. For the second flag,
a splitting of Kn is given by G D .L; B ˚ C/, where L is the span of l , B is the
span of bi for 1 � i � n� 2 and C is the span of c. Let � be the optimal 1-parameter
subgroup associated to the splittingG. Then �.t/vD tc1v for v 2L and �.t/vD tc2v

for v 2 B ˚ C such that c1 C .n� 1/c2 D 0. In particular, � 2 T2, so this means that

S \OT2;f ¤ ;:

A similar argument holds for the other two possibilities of flags. Hence, in any case,
we must have S \OT2;f ¤ ;.

To summarize, suppose we have a closed SLn-stable subset S such that

S \OSLn;f D ; and S \OSLn;f ¤ ;;

then S \OT2;f ¤ ;. Now, since T2 is a torus, we get that S \OT2;f ¤ ; if and only
if w 2 S .

Now, take S D OSLn;f nOSLn;f . Thus,

S ¤ ; , w 2 S:

Clearly, w 2 OSLn;f , so dim..SLn/f / � dim..SLn/w/. Thus,

w 2 S , dim..SLn/f / > dim..SLn/w/, dim..SLn/f / ¤ dim..SLn/w/:

Thus, f is polystable, S D ; , dim..SLn/f / D dim..SLn/w/.
The argument for semistability is analogous where you take S D ¹0º instead of

OSLn;f nOSLn;f .
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Algorithm 8.13. Now we give an algorithm that decides whether a symmetric poly-
nomial is unstable/semistable/polystable/stable in the case p j n.

Input. f 2 KŒx1; : : : ; xn�d .

Step 1. Compute w D ess.f / as in Lemma 8.12. If w D 0, then f is unstable. Else,
proceed to Step 2.

Step 2. If dim..SLn/f /¤ dim..SLn/w/, then f is semistable, not polystable. Else f
is polystable. Moreover, in the case that f is polystable, dim.SLn/f D 0 if
and only if f is stable.

Proof of Theorem 2.14. This follows from Algorithms 8.11 and 8.13.

9. Polystability for interesting classes of symmetric polynomials

We first briefly recall important results on symmetric polynomials, using the oppor-
tunity to introduce notation. While symmetric polynomials in characteristic zero is
widely studied, the case of positive characteristic receives far less attention, so we
will be particularly careful about characteristic assumptions.

First, we define elementary symmetric functions. For each 1 � k � n, we define
the kth elementary symmetric polynomial

ek.x1; : : : ; xn/ D
X

1�i1<i2<���<ik�n

xi1xi2 � � � xik :

We also define the kth homogeneous symmetric polynomial

hk.x1; : : : ; xn/ D
X

1�i1�i2�����ik�n

xi1xi2 � � � xik :

Let ƒ.n/ D KŒx1; : : : ; xn�
Sn denote the ring of symmetric polynomials. The

collection ¹ek.x1; : : : ; xn/ j 1 � k � nº forms an algebraically independent set of
generators for ƒ.n/ as does the collection ¹hk.x1; : : : ; xn/ j 1 � k � nº. In charac-
teristic zero ¹pk.x1; : : : ; xn/ j 1 � k � nº forms an algebraically independent set of
generators as well, where pk denotes the power sum symmetric polynomial

pk.x1; : : : ; xn/ D x
k
1 C x

k
2 C � � � C x

k
n :

However, power sum symmetric polynomials do not form a generating set if
char.K/ < n.

For each partition � D .�1; : : : ; �l/ ` d , we define

e� D e�1
e�2
� � � e�l

;
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h� D h�1
h�2
� � � h�l

;

p� D p�1
p�2
� � �p�l

:

The collection ¹e�.x1; : : : ; xn/ j � ` dº forms a linear basis for ƒ.n/d , the space
of degree d symmetric polynomials as does ¹h�.x1; : : : ; xn/ j �` dº and in character-
istic zero, ¹p�.x1; : : : ; xn/ j � ` dº forms a basis as well. In particular, dimK.ƒ.n/d /
is equal to the number of partitions of d . A very straightforward way to see this is to
define monomial symmetric functions. We say an exponent vector e D .e1; : : : ; en/ is
of type � if it is a permutation of .�1; : : : ; �n/ where we add trailing zeros to � if it
does not have sufficient parts.

m�.x1; : : : ; xn/ D
X

eD.e1;:::;en/ of type �

xe:

It is entirely obvious that ¹m� j � ` dº is a linear basis of ƒ.n/d .
Another interesting collection of symmetric polynomials are the Schur polynomi-

als whose importance comes from the representation theory of the symmetric group
(or equivalently the general linear group). For � D .�1; : : : ; �l/ ` d , we define the
Schur polynomial

s�.x1; : : : ; xn/ D det

0BBBBBB@
h�1

h�1C1 : : : : : : h�1Cl�1

h�2�1 h�2
h�2C1 : : : h�2Cl�2

: : :
:::

: : :
:::

: : : h�l�1 h�l

1CCCCCCA ;

where hd D 0 for d < 0 and h0 D 1. In particular, s.1d /.x1; : : : ; xn/D ed .x1; : : : ; xn/

and sd .x1; : : : ; xn/D hd .x1; : : : ; xn/. There are other equivalent definitions of Schur
functions and we will recall them as and when we need them.

Recall that f 2 KŒx1; : : : ; xn�
Sn

d
, we write f as a polynomial in l D

P
i xi and

b1; : : : ; bn�1, where bi D xi � xiC1. In other words, we have

f D

dX
iD0

l ipi ;

where pi is a polynomial in b1; b2; : : : ; bn�1. Let D D
P
i
@
@xi

for this section.

Lemma 9.1. Assume p − n. Let f 2 KŒx1; : : : ; xn�d . Then f 2 KŒb1; : : : ; bn�1�d if
and only if D

k

kŠ
f D 0 for all k 2 Z>0.

Proof. Suppose f 2 KŒb1; : : : ; bn�1�d , then Dbi D 0, so Dk

kŠ
f D 0 for all k 2 Z>0.

Conversely, suppose f …KŒb1; : : : ;bn�1�d . Then, write f D
P
i l
ipi , and there exists

j > 0 is such that pj ¤ 0. Then, clearly Dj

j Š
f ¤ 0.
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Remark 9.2. In the above lemma, dividing by kŠ may not make sense in character-
istic p if k is large enough. Yet, the differential operator D

k

kŠ
is well-defined. This is

standard and we leave the details to the reader.

In characteristic zero, we have a stronger statement.

Lemma 9.3. Let char.K/D 0. Let f 2 KŒx1; : : : ; xn�d . Then f 2 KŒb1; : : : ; bn�1�d
if and only if Df D 0.

Proof. This is similar to Lemma 9.1 and we leave it to the reader.

Lemma 9.4. We have

� Dek.x1; : : : ; xn/ D .nC 1 � k/ek�1.x1; : : : ; xn/;

� Dhk.x1; : : : ; xn/ D .nC k � 1/hk�1.x1; : : : ; xn/;

� Dpk.x1; : : : ; xn/ D kpk�1.x1; : : : ; xn/.

Proof. This is a straightforward computation and is left to the reader.

9.1. Elementary, homogeneous and power sum symmetric polynomials

We first state a lemma.

Lemma 9.5. Suppose char.K/ D 0, � ` d and d < n. Let f 2 KŒx1; : : : ; xn�
Sn

d
.

Then, f is either unstable or polystable. Further, f is polystable if and only if l − f
and Df ¤ 0.

Proof. Follows from Theorem 8.10 and Lemma 9.3.

Proposition 9.6. Let � ` d be a partition and let d < n. Assume char.K/ D 0. Then
e�.x1; : : : ; xn/, h�.x1; : : : ; xn/, and p�.x1; : : : ; xn/ are either polystable or unstable.
Further, they are polystable if and only if all non-zero parts of � are � 2.

Proof. First, let us consider e�’s. We see that e� D e�1
e�2
� � � e�l

. Thus, l divides e�
if and only if l divides e�i

for some i . But now, we see that l D e1; e2; : : : ; en are
algebraically independent, so l D e1 divides e�i

if and only if �i D 1. A similar
argument holds for h� and p�. Thus, to summarize, we conclude that l does not
divide e�=h�=p� if and only if every non-zero part of � is at least 2.

Now, consider the action of D on e� D e�1
e�2
� � � e�l

. We see that

De� D

lX
iD1

.nC 1 � �i /e�1
� � � e�i�1 � � � e�l

¤ 0;

since nC 1� �i > 0 for all �i since �i � d < n. Similarly, Dh� ¤ 0 and Dp� ¤ 0.
Now, the proposition follows by applying Lemma 9.5.
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Lemma 9.7. Suppose char.K/Dp >0, p − n, �` d , d <n. Let f 2KŒx1; : : : ;xn�
Sn

d
.

Then f is polystable if and only if l − f and Dk

kŠ
f ¤ 0 for some k 2 Z>0.

Proof. Follows from Theorem 8.10 and Lemma 9.1.

Proposition 9.8. Assume char.K/D p − n. Let �D ka1

1 k
a2

2 : : : k
al

l
` d be a partition

and let d < n. Then e�.x1; : : : ; xn/ is polystable if the following conditions hold:

� Every non-zero part of � is � 2;

� p − .nC 1 � ki /ai for some i .

Proof. As in the proof of Proposition 9.6, we can show that l − e�.x1; : : : ; xn/ if and
only if every non-zero part of � is � 2 (since e1; : : : ; en are algebraically indepen-
dent even in positive characteristic). The condition p − .n C 1 � ki /ai for some i
ensures thatDe� ¤ 0 by the same computation as in the proof of Proposition 9.6. The
proposition then follows from Lemma 9.7.

Proposition 9.9. Assume char.K/D p − n. Let �D ka1

1 k
a2

2 : : : k
al

l
` d be a partition

and let d < n. Then h�.x1; : : : ; xn/ is polystable if the following conditions hold:

� every non-zero part of � is � 2;

� p − .nC ki � 1/ai for some i .

Proof. Similar to Proposition 9.8 and left to the reader.

Proposition 9.10. Assume char.K/Dp − n. Let �D ka1

1 k
a2

2 : : :k
al

l
` d be a partition

and let d < n. Then p�.x1; : : : ; xn/ is polystable if the following conditions hold:

� No part of � is equal to pc for some c 2 Z�0;

� p − aiki for some i .

Proof. This is also similar to Proposition 9.8. The only difference is that for k 2 Z>0
such that k � d < n, we have l j pk.x1; : : : ; xn/ if and only if k D pc for some c,
which one sees by the following brief argument.

First, if nD 2, then d D k D 1 is the only case to check. In this case, k D p0 D 1
and l D p1.x1; : : : ; xn/, so clearly

l j p1.x1; : : : ; xn/:

Now, we assume n� 3. Clearly if k D pc , then l j pk.x1; : : : ; xn/. On the other hand,
suppose l D x1 C � � � C xn j pk.x1; : : : ; xn/. Then, we have

x1 C x2 C x3 j pk.x1; x2; x3/
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by setting x4 D x5 D � � � D xn D 0 (this step requires n � 3). Since setting x3 D
�.x1 C x2/ kills a divisor of pk.x1; x2; x3/, namely x1 C x2 C x3, we conclude that

pk.x1; x2;�.x1 C x2// D 0:

This means that
xk1 C x

k
2 C .�1/

k.x1 C x2/
k
D 0:

Now, suppose k is not a power of p, then there exists 1� i � k � 1 such that
�
k
i

�
¤ 0,9

so this means that when you expand out xk1 C x
k
2 C .�1/

k.x1 C x2/
k as a sum of

monomials, we have the non-zero term .�1/k
�
k
i

�
xk1x

k�i
2 , which contradicts

xk1 C x
k
2 C .�1/

k.x1 C x2/
k
D 0:

Hence, k is a power of p.

Remark 9.11. Since we know how to computeDf when f D e�; h� and p�, we can
always compute Dr

rŠ
f and check if it is non-zero for some r .

9.2. Schur polynomials

The case of Schur polynomials is a little more tricky. We need a few preparatory
lemmas.

Lemma 9.12. Let char.K/ D p − n, let � ` d , and suppose 1 < d < n. Then, we
have l − s�.

Proof. Recall that l D s� where � D .1/. For t , let us denote by Pt the collection
of all partitions of size t . Then, for t < n, one checks that ¹s� j � ` tº is a basis for
KŒx1; : : : ; xn�

Sn
t as follows. First, it is clear that ¹h� j � ` tº is a basis. Now, by the

definition of Schur polynomials, one sees that

s� D h� C
X
���

c�;�h�

for some constants c�;�. Here � denotes the lexicographic order. Thus, the linear
transformation that sends h� 7! s� is unipotent and hence invertible. Thus, we con-
clude ¹s� j � ` tº is also a basis.

Now, if l j s�, then s� D l � f , where f 2 KŒx1; : : : ; xn�
Sn

d�1
. Thus, we can write

f D
X
�`d�1

a�s� :

9Indeed, if we write kD dpe where d � 2 is coprime to p, then
�

k

pe

�
¤ 0 in characteristic p.
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But then we can compute l � f by the Pieri rule. We know that

l � s� D
X

�D� [ one box

s�:

Now, let S D ¹� j a� ¤ 0º. Then, under the dominance order, let z� be a maximal
element and x� be a minimal element in S . Then, when we write l � f as a linear
combination of Schur polynomials, we see by the Pieri rule that the coefficient of
sz�C.1;0;:::;0/ is az� ¤ 0 and that the coefficient of s.x�1;x�2;:::;x�r ;1/ is ax� ¤ 0 (where r is
the number of non-zero parts of x�). Thus, l � f when written as a linear combina-
tion of Schur polynomials contains at least two terms, so we cannot have l � f D s�.
Thus, l − s�.

We point out that in the above argument, it is crucial that d � 1 > 0, since other-
wise, we would have

x� D z� D ; and z� C .1; 0; : : : ; 0/ D .x�1; x�2; : : : ; x�r ; 1/ D .1/;

so we would not be able to get a contradiction. This is perfectly reasonable since if
d D 1, we have s� D s.1/ D l , so of course l j s�. We also point out that if d > n,
then some of the s�’s will be zero, so ¹s� j � ` tº will not be a linearly independent
set anymore.

The next computation we need is to understand the action of the differential oper-
atorD on s�. For a partition �, we identify it with its Young diagram, where the boxes
are indexed with matrix coordinates. Thus, we have .i; j / 2 � if the i th row of � is
at least j , i.e., �i � j . For .i; j / 2 �, we write d.i;j / D j � i . When �; � are two
partitions such that � is obtained from � by adding a box in position .i; j /, then we
write d�n� D d.i;j / D j � i .

Proposition 9.13. Let � ` d be a partition, and let d < n. Then

D.s�.x1; : : : ; xn// D
X

�D� [ one box

.nC d�n�/s�.x1; : : : ; xn/:

Proof. For ˛ D .˛1; : : : ; ˛n/, we define

a˛ D det.x j̨Cn�j

i /1�i;j�n:

Let ı D .n � 1; n � 2; : : : ; 1; 0/. Then, it is well known that

s� D
a�Cı

aı
:

One easily checks that Da˛ D
P
i ˛ia˛�1i

, where 1i is a vector with a 1 in its
i th spot and 0’s everywhere else. Moreover, one observes that aˇ D 0 if and only if
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ˇi D ǰ for some i ¤ j . With these two observations, we compute

Da�Cı D
X

�D� [ one box

.nC d�n�/a�Cı :

We also observe that Daı D 0. These two computations, along with the formula
for s�, yield

Ds� D
X

�D� [ one box

.nC d�n�/s�:

If � � �, we define

M.� n �; n/ D
Y

.i;j /2�n�

.nC j � i/:

Further, let f �n� denote the number of standard Young tableau of skew shape � n �.
Then, from the above proposition, one deduces:

Corollary 9.14. Let � ` d be a partition and d < n. Then

Dk

kŠ
.s�.x1; : : : ; xn// D

X
���;j�n�jDk

M.� n �/

kŠ
� f �n� � s�.x1; : : : ; xn/:

We can now prove Theorem 2.15.

Proof of Theorem 2.15. We have l − s� by Lemma 9.12 and Ds� ¤ 0 by Proposi-
tion 9.13. Hence, the corollary follows from Lemma 9.5.

Finally, we note that in positive characteristic, we need to be able to check when
Dk

kŠ
s� ¤ 0. This is equivalent to checking if

M.� n �; n/

kŠ
� f �n� ¤ 0

for some � � �. We know how to computeM.� n�;n/, so it suffices to know how to
compute f �n�. A formula for that was given by Aitken [1] (rediscovered by Feit [22]);
see also [54, Corollary 7.16.3].

Theorem 9.15 (Aitken, Feit). Let � � � be partitions and suppose l.�/ � N . Then,

f �n� D NŠ � det
�

1

.�i � �j � i C j /Š

�N
i;jD1

:

Thus, even in positive characteristic, for any specific �, using these techniques
one should be able to determine whether s� is polystable or not in the case p − n and
d < n.
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Remark 9.16. In this section, we presented a series of results on polystability of
various interesting families of symmetric polynomials, in particular demonstrating
the effectiveness of our approach for proving polystability. Our approach provides a
systematic approach to proving many more such results, some of which might require
interesting combinatorial results to establish.

A. Proof of Theorem 1.1

We now prove Theorem 1.1. One can simply implement the algorithms outlined in
this paper on a computer to verify this result (although it needs a little bit more effort
than naively implementing the algorithm because we want to determine polystability
for all primes, which is a priori an infinite set of computations). However, we will not
directly appeal to the algorithms and instead give an explicit argument. This has a few
advantages. First, it demonstrates the flexibility we actually have in using the ideas
developed in this paper. Second, we want to make the computations as manageable
as possible, i.e., even though we omit many of the computational details, we intend
for it to be hand checkable by the reader with sufficient (but not unearthly) patience.
Indeed, we did these computations by hand. Finally, we want to illustrate the flavor
of combinatorial computations one encounters, and we hope that a deeper analysis
of the combinatorics involved can lead to a better understanding of polystability for
interesting classes of symmetric polynomials, beyond what we discussed in Section 9.

Proof of Theorem 1.1. First, recall that h3.x; y; z/ is the sum of all degree 3 mono-
mials in x; y and z, so

h3.x; y; z/ D x
3
C y3 C z3 C x2y C x2z C xy2 C xz2 C yz2 C y2z C xyz:

Case 1: p − .3 D n/, i.e., p ¤ 3. Suppose h3.x; y; z/ is not polystable. Then, the
optimal parabolic subgroup must either be F D 0 � L � K3 or G D 0 �M � K3,
where L D span.x C y C z/ and M D span.x � y; y � z/ by Corollary 8.7.

Suppose F is the optimal parabolic. Then, a compatible basis is B D .t; q; r/,
where t D x C y C z; q D y; r D z. Let TB be the corresponding torus. We compute
the change of basis

h3.x; y; z/ D h3.t � q � r; q; r/

D t3 � 2t2q � 2t2r C 2tq2 C 3tqr C 2tr2 � q2r � qr2:
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Recall that we are in the case p¤ 3. When p¤ 2, the Newton polytope for h3.x;y;z/
with respect to the torus Tt;q;r is

�

� �

� � �

� � � �

t3

t2q t2r

tq2 tqr t r2

q3 q2r qr2 r3

The picture on the right gives the dictionary between the monomials and their
weights. Note that the weight of a monomial is just its exponent vector, so weight
of t3 is .3; 0; 0/, weight of t r2 is .1; 0; 2/, etc. Now, by Corollary 3.2, we conclude
that h3.x; y; z/ is TB-polystable since .1; 1; 1/ is in the relative interior of the Newton
polytope.

When p D 2, the above simplifies to

h3.x; y; z/ D h3.t � q � r; q; r/ D t
3
C tqr C q2r C qr2:

Now, the Newton polytope is a convex hull of 4 points, and it is easily seen that
.1; 1; 1/ is again in the interior of the Newton polytope, pictured below:

�

� �

� � �

� � � �

Hence, we get that the TB orbit of h3.x; y; z/ is closed. Thus, for all p such that
p − n, h3.x; y; z/ is TB-polystable, so F cannot be an optimal parabolic subgroup
by Theorem 4.1.

Now, suppose G is the optimal parabolic subgroup. Then, a compatible basis is
t D x � y, q D y � z, and r D z. Write B D .t; q; r/ and let TB be the corresponding
torus. We compute the change of basis:

h3.x; y; z/ D h3.t C q C r; q C r; r/

D t3 C 4t2q C 5t2r C 6tq2 C 15tqr C 10tr2

C 4q3 C 15q2r C 20qr2 C 10r3:
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Unless p D 2 or p D 5, it is easy to conclude that h3.x; y; z/ is polystable with
respect to TB by computing its Newton polytope and we leave the details to the reader.
On the other hand, when p D 2, we have

h3.x; y; z/ D t
3
C t2r C tqr C q2r:

The Newton polytope is

�

� �

� � �

� � � �

As is evident, the point .1; 1; 1/ is not in the relative interior, so h3.x; y; z/ is not
TB-polystable. Thus, it suffices to check if w D ess.h3.x; y; z// (with respect to TB)
is in the SL3-orbit of h3.x; y; z/. One easily computes

w D t2r C tqr C q2r D r.t2 C tq C q2/;

which is reducible. But h3.x; y; z/ D t3 C t2r C tqr C q2r is irreducible – think of
it as a polynomial in the variable t with coefficients in the PID K.q/Œr� and apply
Eisenstein’s criterion with the prime r . Thus, h3.x; y; z/ and w are not in the same
orbit.

Thus to summarize, for p D 2, h3.x; y; z/ is not SL3 polystable, G is an optimal
parabolic subgroup and w D t2r C tqr C q2r D r.t2 C tq C q2/ is a point in the
boundary of the SL3 orbit of h3.x; y; z/.

Now, the case of p D 5. In this case, we have

h3.x; y; z/ D t
3
C 4t2q C 6tq2 C 4q3:

We omit the details, but one can check by a similar analysis as above that t3 C
4t2q C 6tq2 C 4q3 is actually unstable with respect to TB . So, h3.x; y; z/ is SL3
unstable (and in particular not polystable) when p D 5!

Case 2: The case p D 3. We will be brief with this case. Suppose h3.x; y; z/ is
not polystable, then there are three possible choices for optimal parabolic. However,
the basis t D x C y C z, q D y � z, r D z is compatible with all possible optimal
parabolics. Thus, if we check that h3.x; y; z/ is TB polystable, where B D .t; q; r/,
then we get a contradiction, so h3.x; y; z/ must be polystable.



Polystability in positive characteristic and degree lower bounds for invariant rings 401

We compute the change of basis

h3.x; y; z/ D h3.t C 2q C r; q C r; r/

D t3 C 7t2q C 5t2r C 17tq2 C 25tqr C 10tr2

C 15q3 C 35qr2 C 30qr2 C 10r3

D t3 C t2q C 2t2r C 2tq2 C tqr C t r2 C 2qr2 C r3:

We leave it to the reader to check that h3.x; y; z/ is TB-polystable by drawing the
Newton polytope.

Thus, we conclude that h3.x;y; z/ is SL3 polystable unless pD 2 or pD 5. When
p D 2, it is SL3 semistable, not SL3 polystable and perhaps most surprisingly, when
p D 5, it is SL3 unstable!
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