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A B S T R A C T   

Patients recovering from cardiovascular surgeries may develop life-threatening complications such as hemody
namic decompensation, making the monitoring of patients for such complications an essential component of 
postoperative care. However, this need has given rise to an inexorable increase in the number and modalities of 
data points collected, making it challenging to effectively analyze in real time. While many algorithms exist to 
assist in monitoring these patients, they often lack accuracy and specificity, leading to alarm fatigue among 
healthcare practitioners. 

In this study we propose a multimodal approach that incorporates salient physiological signals and EHR data 
to predict the onset of hemodynamic decompensation. A retrospective dataset of patients recovering from cardiac 
surgery was created and used to train predictive models. Advanced signal processing techniques were employed 
to extract complex features from physiological waveforms, while a novel tensor-based dimensionality reduction 
method was used to reduce the size of the feature space. These methods were evaluated for predicting the onset 
of decompensation at varying time intervals, ranging from a half-hour to 12 h prior to a decompensation event. 
The best performing models achieved AUCs of 0.87 and 0.80 for the half-hour and 12-h intervals respectively. 
These analyses evince that a multimodal approach can be used to develop clinical decision support systems that 
predict adverse events several hours in advance.   

1. Introduction 

Patients recovering from cardiovascular surgeries are at risk of 
developing life-threatening complications [1]. These complications 
often manifest as some form of hemodynamic instability such as 
arrhythmia, respiratory failure, and hypotension. Thus, the monitoring 
of patients for signs of hemodynamic instability is an essential compo
nent of postoperative care. The ability of clinicians to accurately predict 
future decompensations and other adverse events in postoperative care 

can greatly reduce patient mortality and improve overall patient 
outcomes. 

The need for patient monitoring in postoperative care has resulted in 
the deployment of monitoring devices in intensive care units (ICUs) that 
often generate for each patient over 10,000 data points per second, 
including high density physiological waveform signals. While new bio
sensors have increased the number and quality of available physiolog
ical signals [2], the clinical utility of alarm algorithms essential to the 
timely detection or prediction of adverse conditions has continued to 
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advance at a slower pace than other medical technologies [3–8]. 
Moreover, multiple studies have shown that humans are poor at iden
tifying physiological changes affecting more than two concurrent signals 
[9]. This means that even when ICU clinical teams are continuously 
monitoring a patient’s physiological signals it may be challenging to 
recognize complex patterns that arise through some combination of 
changes across multiple signals [10]. 

Given the need to synthesize and make predictions on such data, 
numerous methods have been developed, which can be roughly 
dichotomized by their use of physiological signals or lack thereof. 

A spectrum of existing predictive systems create recommendations 
based only on clinical data in the electronic health record (EHR) and/or 
occasional (non-continuous) measurement of physiological data. In 
[11], a predictive model was designed to track the changes in relative 
blood volume and heart rate during hemodialysis by using the ultrafil
tration rate. The shock index, the ration of heart rate to systolic blood 
pressure, is widely used in emergency departments to predict mortality 
in traumatically injured patients [12]. In [13], activation functions for 
cardiovascular dynamic models were formulated, using electrocardio
grams (ECGs) as the sole input. In [14], a fuzzy logic approach was 
developed to identify peripheral nerve disorders using EHR data. In 
[15], a machine learning approach for monitoring hemorrhage was 
proposed that assumed all test subjects had similar hemodynamic 
physiology. In [16], a machine learning approach used lab values, vital 
signs, and other EHR values for predicting hemodynamic instability in 
pediatric ICUs. 

Other extant approaches that do incorporate information from 
physiological signals apply relatively simple measures defined using 
Heart Rate Variability (HRV) extracted from such signals to provide 
predictions on the hemodynamic state of patients [17–23]. These 
methods are primarily frequency-based metrics (i.e., high frequency 
(HF), low frequency (LF), and HF/LF ratio) [17,19,20]. For example, in 
[17], a predictive model was developed to identify high-risk hyperten
sive patients; however, this model’s sensitivity was too low for use in a 
clinical study. Several studies throughout the last decade have shown 
the inadequacy of these metrics [18,24]. The insufficient accuracy of the 
aforementioned models may in part be attributed to their inability to 
analyze and integrate all streaming and static data produced by dispa
rate monitoring systems along the continuum of a patient’s treatment, i. 
e., from hospital admission and initial surgical insult through hospital 
discharge. 

To address these concerns, in this study we propose a multimodal 
approach that incorporates salient physiological signals and EHR data to 
predict the onset of hemodynamic decompensation. In Section 2, we 
describe the construction of a retrospective dataset of patients recov
ering from cardiac surgery that was used to construct the prediction 
models. In Section 3, we describe the methods used for feature extrac
tion, feature reduction, and model construction. Advanced signal pro
cessing techniques such as Taut String estimation and Dual-tree 
Complex Wavelet Packet Transform are employed to extract complex 
and non-obvious patterns from ECG signals, while a novel tensor-based 
dimensionality reduction method is used to reduce the size of the 
resultant feature space. In Section 3, we describe the results of these 
methods for predicting the onset of decompensation at varying time 
intervals, ranging from a half-hour to 12 h. The best performing models 
achieve an Area Under the Receiver Operating Characteristic curve 
(AUC) of 0.87 for the half-hour interval, with performance generally 
decreasing as the interval is increased to 12 h, with the best performing 
model at that interval achieving an AUC of 0.80. A discussion of the 
results and a conclusion follow in Sections 5 and 6. 

2. Data 

The data used in this study was collected retrospectively from 
Michigan Medicine data systems. The cohort includes patients who had 
elective cardiac surgery with cardiopulmonary bypass and whose 

physiological waveforms were captured to file. Cases that were emer
gent were excluded, as well as those that occurred on weekends or 
holidays as these tend to be atypical. A hand review of the surgical 
procedure text for each of these cases was performed to exclude cases 
involving chest washouts, ECMO cannulations, and emergency read
missions. This data collection yielded a total of 1863 prospective pa
tients to include in our analysis. 

Nine adverse events associated with hemodynamic instability were 
chosen by our clinical team for inclusion:  

1. Low Cardiac Index – A new decrease in cardiac index below 2.0 L/ 
min/m2 with either no prior cardiac index measurement within 48 h; 
or prior cardiac index measurement within 48 h ≥ 2.0 L/min/m2.  

2. Sustained Low Mean Arterial Pressure – Decrease in mean arterial 
pressure (MAP) below 55 mmHg for ≥ 120 min with either no prior 
MAP measurement within 48 h; or prior MAP measurement within 
48 h ≥ 55. Note that if multiple sources of mean arterial pressure 
were being monitored, the highest mean arterial pressure measure
ment available was used.  

3. Mortality – Patient death that occurred within six months after the 
end of their surgery.  

4. Epinephrine Bolus – An injection of epinephrine may be indicated for a 
variety of cardiovascular conditions, including cardiac arrest and 
hypovolemia. A review of sample cases found that boluses of 10 mcg 
were significant, thus any epinephrine injections greater than this 
amount were considered.  

5. Inotropic Therapy Initiated – Cardiac inotropes may be administered 
by clinical teams to improve the contractile strength of an acutely 
failing heart in order to maintain adequate blood flow to vital organs. 
After cardiac surgery, many patients receive some combination of 
inotropes intravenously. Additionally, new inotropic therapies may 
be initiated by clinical teams postoperatively in response to new 
hemodynamic decompensation. For the purposes of this study, the 
following medications were considered inotropes: milrinone, 
dobutamine, epinephrine, dopamine, and isoproterenol.  

6. Inotropic Therapy Escalated ≥ 100% – In addition to tracking the 
introduction of new inotropic therapies, escalations of ongoing 
inotropic therapies were also considered. As the dosage of medica
tions is frequently titrated up or down in small increments, a 
doubling of a medication was chosen as a proxy for a significant 
change in a patient’s condition. However, the doubling of a medi
cation’s dosage must be above a pre-specified initial threshold to 
qualify as an event. Initial thresholds for each inotrope were: milri
none – 0.250 mcg/kg/min; dobutamine – 2.0 mcg/kg/min; 
epinephrine – 0.02 mcg/kg/min; dopamine – 2.5 mcg/kg/min; 
isoproterenol – 2.0 mcg/min.  

7. Vasopressor Therapy Initiated – Vasopressors may be initiated by 
clinical teams to maintain adequate perfusion pressure of blood flow 
to vital organs. After cardiac surgery, many patients receive some 
combination of vasopressors intravenously. Additionally, new vaso
pressor therapies may be initiated by clinical teams postoperatively 
in response to new hemodynamic decompensation. For the purposes 
of this study, the medications vasopressin and norepinephrine were 
considered as vasopressors.  

8. Vasopressor Therapy Escalated ≥ 100% – In addition to tracking the 
introduction of new vasopressor therapies, escalations of ongoing 
vasopressor therapies were also considered. As in the case for 
inotropic therapies, a doubling of a medication was used as a proxy 
for a significant change in a patient’s condition. As before, the 
doubling of a medication’s dosage must be above a pre-specified 
initial threshold to qualify as an event. Initial thresholds for each 
vasopressor were: vasopressin – 2 units/h; norepinephrine – 
0.10 mcg/kg/min.  

9. Reintubation – A patient was considered reintubated if, after having 
been removed from invasive mechanical ventilation support, support 
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was reinitiated via an invasive advanced airway (e.g., endotracheal 
tube). 

As the patients included in this cohort were recovering from surgery, 
there is an initial period in which most patients are in a state of hemo
dynamic lability, during which vital signs and other measures of car
diovascular activity are in flux and clinical teams are actively mitigating 
known hemodynamic derangements. Therefore, the patient records of 
the prospective cohort were searched for instances of the above nine 
adverse events that occurred 24 h or later after the end of surgery. This 
search yielded 226 patients in the prospective cohort with one or more 
of the nine adverse events. In order to ensure that the adverse events 
discovered were genuine and due to hemodynamic decompensation, 
two clinicians verified each of the identified events, with a third clini
cian adjudicating any discrepancies that arose. After verification, there 
were 180 patients with at least one or more adverse events. This sub- 
population comprises the positive class in the dataset. 226 patients 
from the prospective cohort that did not have any adverse events, as 
verified by clinical review, comprise the negative class in the dataset. The 
final dataset used in this study includes a total of 406 patients, averaging 
67 years of age (min-max = 40–91 years), with 239 (59%) male and 167 
(41%) female. 

In constructing the training and validation datasets, patient data 
were aggregated so that approximately 35% of all samples were positive, 
while the remaining 65% were negative. The date and time of each 
adverse event were identified and analyzed for each sample in the 
positive class. For the negative class, a random time during each pa
tient’s observation period was chosen as the fiducial time point. A uni
form distribution was used to determine these random times; this 
approach allowed the full spectrum of the recovery period to be 
captured in the analysis. Multiple fiducial time points were generated for 
a random selection of the negatives in order to ensure that this sub- 
population comprised 65% of the total number of samples. 

3. Methods 

The proposed method for predicting hemodynamic decompensation 
is depicted in Fig. 1. Details about each step are provided in the sub
sections that follow. 

3.1. Signal processing 

The physiological signal waveforms utilized in this work were elec
trocardiogram (ECG), arterial blood pressure (ABP), and the 

Fig. 1. (a) A depiction of the overall system, in which features extracted from physiological signals and EHR data are used to construct predictive models. (b) The 
proposed feature extraction and selection process for physiological signals. 
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photoplethysmogram obtained from the pulse oximeter used to calculate 
peripheral oxygen saturation (SpO2). Relevant portions of each signal 
were extracted, after which multiple estimations of these signals were 
made using the Taut String method (Section 3.1.2). Further processing 
and feature extraction methods for each signal are described below. 

3.1.1. Signal extraction: signal availability, prediction windows, tumbling 
analysis windows 

For each fiducial time point, six 15-min analysis windows preceding 
the fiducial time point were identified for signal extraction and analysis. 
Associated with each 15-min “analysis window” is a “prediction win
dow” preceding the fiducial time point. Prediction windows in this study 
were 0.5, 1, 2, 4, 8, and 12 h. Patients whose recorded signals were of 
insufficient duration for this analysis (<24 h, 45 min), or for whom 
discrepancies arose in signal duration greater than 15 s between the 
waveform timestamps from the EHR and duration as calculated based on 
the sampling rate, were discarded. This extraction and filtering process 
yielded M = 243,246,223,191,160, and 151 observations for prediction 
windows of 0.5, 1, 2, 4, 8, and 12 h, respectively, from 44 distinct pos
itive and 97 negative patients (see Tables 5 and 6 in Appendix A for a 
breakdown of events by patient). Each 15-min analysis window was 
divided into five non-overlapping tumbling windows of 3-min duration. 
Tumbling windows of 3, 4, and 5 min in length were also tested, with 3- 
min windows yielding the best performance. In addition to better per
formance, a smaller window allows for a trained model deployed in a 
clinical setting to produce a prediction sooner. This may increase the 
impact of these predictions in alerting clinicians to patients who are 
transitioning from a stable to deteriorating state. Signal pre-processing 
and feature extraction methods were then applied to the physiological 
signal waveforms contained in each tumbling window, as described 
below. 

3.1.2. Taut string 
In [25], peak-based and statistical features calculated from Taut 

String (TS) estimation [26,27] of ECG signals were shown to be useful 
for detecting hemodynamic instability. Given a discrete signal f = (f1,…,

fn), define the first-order finite difference as 

D(f ) = (f2 − f1,…, fn − fn− 1). (1)  

For a fixed ϵ > 0, the Taut String estimate of f is the unique function g 
such that ‖f − g‖∞ ≤ ϵ and ‖D(g)‖2 is minimal, with ‖⋅‖∞ and ‖⋅‖2 
denoting the max norm and Euclidean norm respectively. In general, g is 
a piecewise linear function whose segments can be intuitively visualized 
as a string pulled from both ends through f + ϵ and f − ϵ. 

In this study, the same features obtained from Taut String estimation 
in [25] were utilized for analysis of the windowed ECG signals. 

3.1.3. Dual-tree complex wavelet packet transform 
The authors in [25] also utilized statistical features calculated from 

the sets of coefficients obtained from application of the dual-tree com
plex wavelet transform (DTCWT) to each tumbling window. While 
DTCWT is useful in many applications, the decompositions it produces 
are non-optimal as the transform fails to consider the characteristics of 
the signal of interest. Therefore, in this study, an extended version of the 
DTCWT called the Dual-Tree Complex Wavelet Packet Transform 
(DTCWPT) [28] was utilized. DTCWPT provides a computationally 
efficient means for determining an optimal wavelet basis to faithfully 
represent the frequencies present in a given signal, while still preserving 
the approximate shift-invariance of DTCWT. This allows the transform 
to better capture complex features present in biomedical signals such as 
ECG. 

Executing in parallel, the DTCWPT uses two wavelet filter banks to 
decompose, at each stage/level k, each of the subbands using both low- 
pass and high-pass perfect reconstruction (PR) filters banks (FBs). For 
the transform to achieve approximately analytic subbands, a necessary 
condition for approximate shift-invariance, the PR FBs must be selected 
so that the frequency response of each branch of the second wavelet 
packet FB is the discrete Hilbert transform of the corresponding branch 
of the first wavelet packet FB. 

Let Ψ be the wavelet for the respective low-pass and high-pass filters 
h0(n) and h1(n), and Ψ

′

its Hilbert pair (i.e., Ψ
′

= ℋ{Ψ}). Given an 
orthonormal wavelet basis, the z-transforms of h0 and h1, denoted as H0 
and H1, are related by the equation 

H1(ejw) = − ejdwH*
0(e

j(w− d)), (2)  

while H1 and H′

1 have the relationship 

H ′

1 = − j⋅sgn(w)ej0.5wH1(ejw), (3)  

where sgn is the signum function, d is an odd integer, and |w| < π. 
Let H(k)(ejw) be the equivalent response at stage/level k, then it can 

be shown [28] that: 

H(k)(ejw) = H1(ej2(k− 1)w)
∏k− 2

m=0
H0(ej2mw) (4)  

The equivalent response of the second filter bank’s corresponding 
branch is: 

H
′

(k)(ejw) = − ej0.5wℋ{H(k)(ejw)}. (5) 

Corresponding filters within each FB must be chosen to be identical 
but can still be chosen to reflect the frequencies and morphology of the 
underlying signal to be analyzed. Increasing the number of stages/levels 
k yields greater frequency resolution provided the input signal is of 
sufficient length (a⋅2k, a ∈ ℕ), albeit at greater computational expense. 

Fig. 2. An example of the filtering process used for ECG signals: (a) a sample of raw ECG signal; (b) the ECG sample after Butterworth filtering; and (c) a Taut String 
estimation of the sample (ϵ = 0.1575). 
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In this study, k = 2 was used. Further details can be found in [28]. 

3.2. Feature extraction I: ECG-based predictors 

The ECG signal within each tumbling window was band-pass filtered 
with a 2nd order Butterworth filter to remove artifacts that commonly 
arise in electrocardiograms. The cutoff frequencies employed with these 
clinical ECG signals were 0.5 and 40 Hz. 

Taut String estimation was applied to the filtered ECG using five 
values of the parameter є: 0.0100, 0.1575, 0.3050, 0.4525, and 0.6000. 
For each tumbling window and value of є, six morphological and sta
tistical predictive features were calculated from the resulting Taut String 
estimates. These features include: (1) number of line segments per 
heartbeat, (2) number of inflection segments per heartbeat, (3) total 
variation of the noise per heartbeat, (4) total variation of de-noised 
signal per heartbeat, (5) power of the de-noised signal, (6) and power 
of the noise. Fig. 2 illustrates the filtering and Taut String estimation 
process for a sample of ECG signal. 

A second set of features was generated by applying the DTCWPT with 
two levels of decomposition to the Taut String estimates of the filtered 
ECG signal levels. 19 features were calculated from each set of co
efficients, including Shannon entropy, the log energy entropy, energy, 
power, mean coefficient value, maximum coefficient value, minimum 
coefficient value, standard deviation, range, kurtosis, and skewness. 
With two levels of decomposition, each of the two filter banks yielded 4 
sets of coefficients, thereby producing 152 wavelet features. These 152 
features were calculated for each tumbling window and value of є. 

To generate the Heart Rate Variability (HRV) from the filtered ECG 
waveform, R peaks were first identified using a novel peak detection 
method as described in Appendix B. If t = (t1,…, tn) is the discrete signal 
representing the times at which the identified R peaks occurred, then the 
HRV signal is defined as D(t) (see Eq. (1)). Five Taut String estimates of 
the HRV signal were obtained. The values of є were 0.001, 0.0258, 
0.0505, 0.0753, and 0.100. The six aforementioned morphological and 
statistical predictive features obtained from Taut String Estimation were 
then calculated for each value of є. 

3.3. Feature extraction II: arterial blood pressure 

The arterial blood pressure (ABP) waveform of each tumbling win
dow was band-pass filtered with a 3rd order Butterworth filter to remove 

artifacts. The cutoff frequencies were 1.25 and 25 Hz. 
Taut String estimation was applied to the filtered waveform. The 

values of ϵ were 0.1, 0.7, 1.3, 1.9, and 2.5. The systolic peak and the 
diastolic peak within each cycle of the signal were identified [29]. From 
these two peaks, 21 features that have been shown to be effective for 
detecting changes in hemodynamic state [30] were calculated for each 
value of є. These include the total number of peaks, as well as the min, 
max, mean, median, and standard deviation of (a) the time interval 
between consecutive systolic peaks, (b) the time interval between sys
tolic peak and subsequent diastolic peak (c) the relative amplitude be
tween consecutive systolic peaks, and (d) the relative amplitude 
between systolic peak and subsequent diastolic peak. These 21 features 
were calculated for each tumbling window and value of є. 

3.4. Feature extraction III: SpO2 signal 

The SpO2 signal within each tumbling window was band-pass 
filtered with a 3rd order Butterworth filter to remove artifacts. The 
cutoff frequencies were 1.75 and 10 Hz. The feature extraction process 
for SpO2 signals was identical to the process for the ABP signals. Just as 
with ABP, the process produced 21 features for each tumbling window 
and value of ϵ. 

The features extracted from each signal are summarized in Table 1. 

3.5. Feature extraction IV: electronic health records 

In addition to signal-based features, electronic health record (EHR) 
data was incorporated into the predictive model. These data include the 
static EHR data, such as patient age, race, and 30 comorbidities such as 
obesity, diabetes, alcohol abuse, chronic pulmonary disease, and drug 
abuse; and the temporal EHR data, including the lab results (i.e., blood 
tests, hematology, metabolites, kidney function, immune function, 
coagulation, among others), medications administered during the 
course of a patient’s stay (cardiovascular infusions, other cardiovascular 
drugs, non-cardiovascular drugs), daily respiratory support (fraction of 
inspired oxygen, positive end-expiratory pressure, intubation status), 
and vital signs not derivable from the physiological signals used in the 
study (e.g., temperature and oxygen saturation). Values for temporal 
EHR data were extracted for each tumbling window. 

Clinical lab results were encoded into “critical”, “low”, “normal”, 
“high” and “unknown” categories. Values categorized as critical may lie 
outside either the low or high value ranges, depending on the specific 

Table 1 
The features extracted from each signal.  

Taut string estimates of ECG and HRV 
Number of line segments per heartbeat, Number of inflection segments 
per heartbeat, Total variation of noise per heartbeat, Total variation of 
denoised signal per heartbeat, Power of denoised signal, Power of noise 
(6 features per signal, 12 total)  

DTCWPT of Taut String Estimate of ECG 
Standard deviation, Shannon entropy, Log Energy Entropy, Energy, 
Power, Min, Mean, Max, Median of largest 16, Range, Mean gradient, 
Kurtosis, Skewness, Complexity, Mobility, Log of variance of probability 
distribution, Mean value of amplitude of FFT, sum of auto-correlation 
sequence, mean value of cross-covariance 
(19 features)  

Taut String Estimates of Arterial Blood Pressure and SpO2 

Total number of peaks; 
Min, Max, Mean, Median, Standard deviation of 
time interval between consecutive systolic peaks; 
Min, Max, Mean, Median, Standard deviation of time interval 
between systolic peak and subsequent diastolic peak; 
Min, Max, Mean, Median, Standard deviation of relative amplitude 
between consecutive systolic peaks; 
Min, Max, Mean, Median, Standard deviation of 
relative amplitude between systolic peak and subsequent diastolic peak 
(21 features per signal, 42 total)  

Table 2 
Numerical ranges and critical threshold values used to encode patient laboratory 
results.  

Lab parameter Reference 
range 

Critical 
threshold 

Unit 

Creatinine Male: 0.7–1.3 
Female: 
0.5–1.0 

>2.0  mg/dL 

Glucose 70–180 <40  mg/dL 
Hematocrit (HCT) Male: 40–50 

Female: 36–48 
<21  % 

Hemoglobin (Hgb) Male: 13.5–17 
Female: 12–16 

<7  g/dL 

International normalized ratio 
(INR) 

0.9 –1.2 >2.0   

Lactate Arterial: 
0.5–1.6 
Venous: 
0.5–2.2 

>4.0  mmol/ 
L 

Platelet count (PLT) 150–400 <50  109/L  
Potassium 3.5–5.0 >6.0  mmol/ 

L 
Sodium 136–146 >155  mmol/ 

L 
White blood cell count (WBC) 4–10 >20  109/L   
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laboratory parameter. The thresholds for critical values were chosen to 
target a cardiovascular ICU population. Reference ranges and critical 
thresholds for these lab values are presented in Table 2. In total, 101 
features were selected from electronic health records. 

3.6. Tensor-based dimensionality reduction 

The feature extraction process yields 5150 features from the ECG, 
ABP, and SpO2 waveforms when all tumbling windows and values of ϵ 
are taken into consideration. Typically in machine learning applications 
these features would be concatenated into a one-dimensional feature 
vector, after which various methods of feature selection, such as prin
cipal component analysis, could be applied. However, by reducing these 
signals to a single dimension, one loses potentially valuable information 
about how the features relate to one another at different time points 
(tumbling windows) and different scales (values of ϵ). If available, this 
information can be used to judiciously select the features salient to the 
task at hand while discarding those with redundant information. Thus, 
instead of treating these features as a one-dimensional vector, they are 
assembled into tensors that preserve the structural and temporal re
lationships inherent in the feature space. 

3.6.1. Tensor formation 
The waveform features for each patient are comprised of five groups: 

6 HRV Taut String features, 6 ECG Taut String features, 152 DTCWPT 
wavelet features derived from the Taut String estimate of the ECG, 21 
ABP features, and 21 SpO2 features. Each feature is calculated for 5 
tumbling windows and for 5 different values of ϵ per window. Prior to 
tensor formation the features within each tumbling window/value of ϵ 
are standardized, with the population means and standard deviations 
calculated for each feature/window/ϵ from the training set being used to 
standardize the corresponding feature/window/ϵ in the test set. Third- 
order tensors (ϵ× feature× window) are then constructed for each of 
the five feature groups: the 6 HRV Taut String and 6 ECG Taut String 
features yield two 5 × 6 × 5 tensors, the 152 DTCWPT wavelet features 
form a 5 × 152 × 5 tensor, and the 21 ABP and 21 SpO2 features each 
produce a 5 × 21 × 5 tensor. An example of tensor formation for the ECG 
Taut String features is depicted in Fig. 3. Once formed, dimensionality 
reduction on these tensors then follows a two-step process: (1) a 
sequence of tensor analysis methods that determines the underlying 
structure within each tensor, and (2) extracting a reduced set of features. 

3.6.2. Determining the tensor structure 
The underlying structure of each tensor is determined by analyzing 

the tensors generated from the training set, as depicted in Fig. 4. The 
tensors resulting from each waveform feature group are stacked in the 

fourth mode to create a fourth-order tensor. For example, for the HRV 
Taut String features and a prediction interval of 30 min, this creates a 
tensor of size 5× 6× 5× M, where M is the number of patients in the 
training set. The same stacking is done for the other groups of features. 

Some of the groups (e.g., the DTCWPT ECG TS features) have too 
many features to make tensor decomposition feasible, thus Higher Order 
Singular Value Decomposition (HOSVD) [31–33] is used to reduce the 
number of features in those groups. HOSVD is a generalization of the 
singular value decomposition of a matrix. It can be also viewed as a 
higher order Principal Component Analysis (PCA) for data dimension
ality reduction. HOSVD decomposes a tensor of order d into factor 
matrices Ui(1 ≤ i ≤ d) and a core tensor. HOSVD can be used to reduce a 
dth order tensor of size n1 × n2 × … × nd to a core tensor of size n′

1 ×

n′

2 × … × n′

d such that n′

i ≤ ni for 1 ≤ i ≤ d. 
For each tensor X, HOSVD is applied to mode 2 (the feature mode), 

producing a version X̂. The relative error E is then calculated as 

E =

⃦
⃦
⃦X − X̂

⃦
⃦
⃦

‖X‖
, (6)  

with ‖X‖ denoting the norm of the tensor X, defined as 

‖X‖ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i1 ,…,id

(xi1…id )
2

√

, (7)  

where xi1…id is the (i1, i2, …, id)th entry of X. If E is greater than 10%, 
HOSVD is repeated using a larger n′

2 and terminates at the original 
dimension n2 in mode 2 if no valid approximation is found. For example, 
the 5 × 152 × 5 × M tensor of the DTCWPT ECG TS features is reduced 
to a 5 × f3 × 5 × M tensor, with f3≪152. The HOSVD algorithm also 
generates as output a matrix U1 that gives the transformation from the 
152-dimensional space to the f3-dimensional space. This is repeated for 
the ABP and SpO2 features, which results in tensors of size 5 × f4 × 5 ×

M and 5× f5 × 5× M, as well as transformation matrices U2 and U3, 
respectively. The fourth-order tensors for each of the feature groups are 
then stacked in mode 2 (features) to obtain a 5 × F × 5 × M tensor T, 
where F = 6+ 6+

∑5
i=3fi. 

In the final step of determining the tensor structure, a Canonical 
Polyadic (CP) decomposition [34] of the tensor T is computed. The CP 
decomposition factors a tensor into a sum of rank-1 tensors and can be 
considered another higher order generalization of singular value 
decomposition. In general, given a tensor Y = ℝn1×⋯×nd and a rank r, its 
CP decomposition is the tensor 

Fig. 3. Constructing a tensor from signal features. In this example, feature vectors are extracted from each tumbling window wi (with 1 ≤ i ≤ 5) from the Taut String 
estimate of the ECG signal using parameterϵ1, producing a 6 × 5 feature matrix. This process is repeated for each value of ϵ, with the resultant matrices stacked 
together to form a third-order tensor of dimension 5× 6× 5. 
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Fig. 4. A schematic diagram for the tensor-based feature reduction method. This process yields transformation matrices U1,U2,U3 and factor matrices A and C that 
are subsequently used for feature extraction. 
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Ŷ =
∑r

i=1
v1 ⊗ ⋯ ⊗ vd (8)  

such that ‖Y − Ŷ‖ is minimized. The smallest integer r for which such a 
decomposition exists is called the tensor rank of Y. As finding CP de
compositions is NP-hard [35], heuristic methods are used instead. The 
Alternating Least Squares (ALS) method [34] is an iterative algorithm 
that attempts to find the best approximation Ŷ for a given rank r. The 
best approximation is usually chosen based on the highest fit, defined as 
fit = 1 − E, where E is the relative error as defined above. To determine 
the rank r, CP decomposition was applied to the feature tensors with 
increasing values of r starting from r = 1, with r being chosen as the 
minimum value where the fit of the resultant approximation T* was 
greater than 0.9. In our experiments, r = 4 was the smallest value tested 
that consistently achieved the desired fit, thus this was the value used for 
all subsequent decompositions. 

For each fourth-order tensor T used in our analysis, the ALS method 
is applied 100 times to determine the best approximation T*, where 

T* =
∑r

i=1
ai ⊗ bi ⊗ ci ⊗ di. (9)  

The vectors a1, a2,…, ar are grouped together to form the factor matrix A 
of size 5× r. Similarly, a matrix C of size 5 × r is created. The matrices B 
and D are discarded while the matrices A and C are retained for feature 
extraction. 

3.6.3. Extracting features from the reduced tensors 
For each patient in the training set and each group of features we 

have a third-order tensor as explained above. Using the transformations 
learned in the previous step, features can now be extracted for any pa
tient in the dataset, including those in the test set. This process is 
depicted in Fig. 5. For any patient j the matrices U1,U2,U3 are utilized to 

Fig. 5. Extracting features using the learned tensor structure. The transformation matrices and tensors from the previous step will be used to extract features from 
any patient. ×2 denotes the mode-2 product of the tensor with the transformation matrix Ui. 
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Fig. 6. The performance of (a) Naive Bayes (b) SVM (c) Random Forest, (d) LUCCK and (e) Adaboost models trained with non-reduced signal features, tensor- 
reduced signal features, the combination of non-reduced signal features with EHR features, and the combination of tensor-reduced signal features with EHR. Re
sults on both the training and testing set are shown. The vertical bar at each data point indicates the 95% confidence interval obtained from the 101 cross-validations. 
(For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 
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reduce the number of DTCWPT ECG TS, ABP, and SpO2 features. Next, 
the (dimension-reduced) tensors for all feature groups are stacked 
together to construct a 5 × F × 5 tensor Sj. Note that this stacked tensor 
of combined features is third-order rather than fourth-order as in the 
previous step, as we are extracting features from each patient’s data 
independently. The matrices A and C from the CP decomposition of T 
yield the vectors a1, a2,…, ar and c1,c2,…, cr. We now find vectors b1,

b2,…, br for which 

‖Sj −
∑r

i=1
ai ⊗ bi ⊗ ci‖ (10)  

is minimal. This is a standard least squares problem that is easy to solve. 
The feature vectors b1, b2,…, br are concatenated to create a new 
feature matrix βj of dimension F× r. 

On average, this tensor decomposition algorithm reduces the number 
of signal-based features from 5150 to 430.1386 (min–max = 412–448, 
SD = 8.5896), with F = 107.5 and r = 4, a 92% reduction. 

3.7. Electronic health record feature reduction 

As described in Section 3.5, 101 features were extracted from each 
patient’s electronic health record. These features do not possess a 
structural or temporal relationship suitable for reduction using the 
above tensor-based method. However, there are many extant techniques 
that can be used for feature selection. Two such methods are principal 
component analysis (PCA) [36,37] and the minimum redundancy 
maximum relevance (MRMR) method [38,39]. During the development 
of this work both of these methods were tested for EHR feature reduc
tion, but models utilizing the reduced EHR features consistently per
formed worse than the models for which non-reduction of the EHR 
features was performed. This is likely due to the majority of the EHR 
data being comprised of binary-valued features. Thus, in all subse
quently reported results in this manuscript, the full set of 101 EHR 
features were utilized in modeling. 

3.8. Machine learning 

The physiological features were combined with all available EHR 
features and five types of machine learning models were trained. These 
include Random Forest [40], Naive Bayes [41], Support Vector Machine 
[42], Adaboost [43] and a recently developed kernel-based method 
called Learning Using Concave and Convex Kernels (LUCCK) [44]. All 
models were trained using the following combinations of signal-based 
and EHR features: (1) non-reduced waveform features (2) 
tensor-reduced waveform features, (3) non-reduced waveform features 
combined with all EHR features and (4) tensor-reduced waveform fea
tures combined with all EHR features. 

A repeated three-fold cross-validation scheme was utilized for ma
chine learning. The data were partitioned into three training folds plus a 
test fold. Each fold contained 25% of the samples and consisted of 35% 
positives and 65% negatives. No patient data occurred in more than one 
fold. Models were trained using the combined data of two folds, and an 
AUC score was calculated using the third fold for validation purposes. 
Model training was performed three times so that each fold was utilized 
exactly once to calculate an AUC score. The set of hyper-parameters 
achieving the highest AUC score averaged among the three validation 
scores was deemed optimal. Using these optimal hyper-parameters, a 
model was fit on the combined data from all three folds and subse
quently evaluated using the test fold. Evaluation metrics obtained with 
the test set include AUC, F1 score, Precision, Recall, Sensitivity, and 
Specificity. The data were then shuffled, and the process was repeated 
for a total of 101 iterations. 

3.8.1. Naive Bayes 
A simple Naive Bayes (NB) model using a normal distribution and no 

hyperparameter tuning was trained as a baseline for model performance. 

3.8.2. Support vector machine 
For the SVM models, linear, radial basis function (RBF), and 3rd- 

order polynomial kernels were evaluated. A grid search was per
formed to determine the best box constraint C and non-linear kernel 
scale γ, with logarithmically-spaced values chosen for C ∈ [10− 6, 1013]

and γ ∈ [10− 12,1013]. Sequential minimal optimization (SMO) [45] was 
used for the optimization routine. 

Table 3 
The means and standard deviations of AUC for models trained with (a) all signal 
features, (b) tensor-reduced signal features, (c) all signal features plus EHR, and 
(d) tensor-reduced signal features plus EHR, for all prediction windows. The best 
performance at each prediction window is bolded, while the lowest standard 
deviation is italicized.  

Prediction 
window (h) 

Naive 
Bayes 

LUCCK RF SVM Adaboost  

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

(a) Mean AUC and standard deviation of non-reduced models, no EHR 
0.5 0.59 

(0.07) 
0.76 
(0.06) 

0.75 
(0.06) 

0.76 
(0.06) 

0.79 
(0.05) 

1 0.59 
(0.08) 

0.76 
(0.07) 

0.75 
(0.07) 

0.75 
(0.07) 

0.82 
(0.05) 

2 0.54 
(0.06) 

0.67 
(0.11) 

0.71 
(0.08) 

0.67 
(0.10) 

0.74 
(0.07) 

4 0.57 
(0.08) 

0.73 
(0.08) 

0.71 
(0.09) 

0.66 
(0.08) 

0.74 
(0.06) 

8 0.54 
(0.07) 

0.76 
(0.08) 

0.76 
(0.08) 

0.73 
(0.09) 

0.83 
(0.06) 

12 0.50 
(0.08) 

0.71 
(0.08) 

0.68 
(0.07) 

0.65 
(0.09) 

0.72 
(0.06)  

(b) Mean AUC and standard deviation of tensor-reduced models, no EHR 
0.5 0.68 

(0.07) 
0.72 
(0.06) 

0.71 
(0.06) 

0.68 
(0.08) 

0.68 
(0.07) 

1 0.70 
(0.07) 

0.71 
(0.07) 

0.74 
(0.06) 

0.69 
(0.07) 

0.73 
(0.05) 

2 0.65 
(0.08) 

0.66 
(0.08) 

0.68 
(0.08) 

0.63 
(0.09) 

0.69 
(0.07) 

4 0.62 
(0.09) 

0.72 
(0.07) 

0.70 
(0.08) 

0.63 
(0.08) 

0.69 
(0.07) 

8 0.64 
(0.10) 

0.72 
(0.10) 

0.72 
(0.08) 

0.64 
(0.10) 

0.76 
(0.07) 

12 0.62 
(0.10) 

0.69 
(0.09) 

0.68 
(0.09) 

0.62 
(0.08) 

0.73 
(0.06)  

(c) Mean AUC and standard deviation of non-reduced models with EHR 
0.5 0.59 

(0.07) 
0.79 
(0.06) 

0.78 
(0.06) 

0.84 
(0.07) 

0.85 
(0.05) 

1 0.61 
(0.08) 

0.79 
(0.06) 

0.78 
(0.07) 

0.84 
(0.07) 

0.84 
(0.05) 

2 0.55 
(0.06) 

0.75 
(0.08) 

0.74 
(0.08) 

0.76 
(0.08) 

0.82 
(0.06) 

4 0.59 
(0.08) 

0.70 
(0.12) 

0.73 
(0.08) 

0.74 
(0.07) 

0.81 
(0.05) 

8 0.53 
(0.08) 

0.78 
(0.08) 

0.77 
(0.08) 

0.81 
(0.06) 

0.85 
(0.06) 

12 0.52 
(0.08) 

0.73 
(0.08) 

0.69 
(0.9) 

0.74 
(0.08) 

0.77 
(0.06)  

(d) Mean AUC and standard deviation of tensor-reduced models with EHR 
0.5 0.74 

(0.06) 
0.87 
(0.05) 

0.89 
(0.04) 

0.80 
(0.08) 

0.85 
(0.05) 

1 0.78 
(0.06) 

0.88 
(0.05) 

0.87 
(0.04) 

0.81 
(0.08) 

0.73 
(0.05) 

2 0.75 
(0.07) 

0.85 
(0.06) 

0.85 
(0.06) 

0.73 
(0.09) 

0.69 
(0.07) 

4 0.70 
(0.09) 

0.84 
(0.06) 

0.83 
(0.07) 

0.72 
(0.08) 

0.69 
(0.07) 

8 0.71 
(0.08) 

0.85 
(0.07) 

0.81 
(0.07) 

0.74 
(0.08) 

0.76 
(0.07) 

12 0.70 
(0.09) 

0.80 
(0.07) 

0.75 
(0.07) 

0.72 
(0.09) 

0.74 
(0.06)  
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3.8.3. Random forest 
The Random Forest method possesses a number of configurable pa

rameters. These include the number of trees, minimum leaf size, node 
splitting criterion, number of predictors to sample, and the maximum 
number of decision splits for the decision trees. The values tested for the 
number of trees parameter were 50, 75, and 100; the minimum leaf size 
parameter values were 1, 5, 10, 15, and 20; the node splitting criteria 
tested were cross entropy and Gini impurity. The number of predictors 
to sample tested were [10, 20, …, 100]; and the maximum number of 
decision splits parameter, expressed as a percentage of the training 
sample size, was 0.25, 0.50, 0.75, or 1.0. The optimal combination of 
these parameters was determined via a grid search approach. 

3.8.4. Adaboost 
Adaboost (adaptive boosting) is an ensemble machine learning al

gorithm. For each learning cycle, each weak learner is sequentially 
trained to classify the given input features into a binary outcome. The 
sum of the predictions made by these learners, weighted based on the 
error in the respective stages of training, is used to make the final pre
diction. In this study, 100 weak discriminant learners were trained via 
gradient boosting [46]. Grid search was employed to determine the best 
values of hyperparameters δ and γ, with δ ∈ [10− 6, 103] spaced loga
rithmically and γ ∈ [0,1]. No regularization was used when training the 
models, i.e., the learning rate was set to 1. 

3.8.5. Learning Using Concave and Convex Kernels (LUCCK) 
The LUCCK method is a recently developed machine learning clas

sifier [44]. It adjusts the concavity or convexity of similarity functions to 
determine independent models for each feature. This information is then 
used to adjust the importance of each feature for classification. The al
gorithm has two numerical hyper-parameters, λ and θ, which were 
optimized via grid search. In this study, approximately 50 values in the 
interval [5 × 10− 5,3.0] were utilized for θ, while logarithmically-spaced 
values in the interval [10− 9,0.05] were evaluated as values of λ. 

3.9. Comparison with other methods 

In addition to testing multiple models and combinations of features, 
the proposed multimodal method was compared to one introduced in 
Melillo et al. [17]. Their method utilized common HRV features, such as 
correlation dimension, sample entropy, and absolute powers in various 
frequency bands, and employed a correlation feature selection (CFS) 
[47] algorithm on such signal features to determine the set of features 
with the lowest correlation. These features were then combined with 
EHR features to make predictions of adverse cardiovascular and cere
brovascular events. In this work, we utilize the Taut String HRV features 
(see 3.2) as well as the EHR features available in our dataset to emulate 
this method. 

4. Experimental results 

Plots of AUC vs. Prediction Window for the Naive Bayes, SVM, 
Random Forest, Adaboost, and LUCCK models are displayed in Fig. 6. 
Table 3 (a) compares the performance of models trained using the full 
set of signal-derived features, while Table 3 (b) shows the performance 
for models using the tensor-reduced set of signal features. Table 4 pro
vides a performance comparison of the final models trained using both 
the tensor-reduced signal features and the selected EHR features. ROC 
curves for the final models for the half-hour prediction window are 
provided in Figure 7.  

The Naive Bayes algorithm trained with the tensor-reduced signal 
features and EHR features achieved the highest AUC across all Naive 
Bayes models (Fig. 6(a): light green curve). The highest AUC was 0.78 
for the 1-h prediction window. The lowest AUC was 0.697 for the 12-h 
window; however, the 95% confidence intervals for models trained on 
the 4, 8, and 12-h prediction windows overlapped with each other. With 
non-reduced signal features, the addition of EHR features did not 
improve the results significantly. When only signal features were used, 
the models trained with tensor-reduced signal features performed better 
than the model trained with non-reduced signal features consistently 
across all the prediction windows. However, overall, the Naive Bayes 
models performed worse than the SVM, Random Forest and LUCCK 
models. 

The SVM algorithm, on the other hand, performed best when it was 
trained with the non-reduced signal features along with the EHR. The 
highest AUC across all SVM models was 0.84 for the 0.5-h prediction 
window trained with the non-reduced signals and EHR features (Fig. 6 
(b): magenta curve). For the same set of features, the lowest AUC was 
0.74 for the 4-h window; however, the 95% confidences interval for 2, 4, 
and 12-h prediction windows overlapped with each other. The SVM 
models trained on tensor-reduced signal features alone performed 
marginally worse than the SVM models trained using only the non- 
reduced signal features. The SVM models overall performed better 
than the Naive Bayes models, and performed consistently worse than the 
Adaboost models. With the exception of models with non-reduced sig
nals and EHR features, SVM overall performed worse than the LUCCK 
and RF models. 

The Random Forest models trained with the combination of tensor- 
reduced signal features and EHR features (Fig. 6(c): green curve) ach
ieved the highest AUC scores across all prediction windows. For this 
model, the highest AUC was 0.89 for a half-hour prediction window. The 
lowest AUC was 0.75 and occurred for a 12-h prediction window. The 
AUC scores steadily decreased as the size of the prediction window 
increased, which is expected, as the information in the temporal data 

Table 4 
The means and standard deviations of F1 scores for the final models trained with 
tensor-reduced signal features and EHR features for all prediction windows. The 
corresponding AUC results can be found in Table 3(d). The best performance at 
each prediction window is bolded, while the lowest standard deviation is 
italicized.  

Prediction 
window (h) 

Naive 
Bayes 

LUCCK RF SVM Adaboost  

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

0.5 0.68 
(0.06) 

0.77 
(0.06) 

0.78 
(0.06) 

0.71 
(0.07) 

0.75 
(0.06) 

1 0.70 
(0.06) 

0.77 
(0.06) 

0.76 
(0.06) 

0.71 
(0.07) 

0.65 
(0.05) 

2 0.69 
(0.06) 

0.74 
(0.07) 

0.74 
(0.07) 

0.65 
(0.07) 

0.62 
(0.06) 

4 0.65 
(0.07) 

0.74 
(0.07) 

0.73 
(0.07) 

0.64 
(0.07) 

0.61 
(0.06) 

8 0.66 
(0.07) 

0.75 
(0.07) 

0.72 
(0.07) 

0.63 
(0.16) 

0.68 
(0.07) 

12 0.66 
(0.08) 

0.72 
(0.08) 

0.67 
(0.06) 

0.67 
(0.08) 

0.66 
(0.06)  
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Fig. 7. ROC curves of the (a) Naive Bayes (b) SVM (c) Random Forest, (d) LUCCK, and (e) Adaboost models trained with the combination of tensor-reduced signal 
features and EHR for the half-hour prediction window. The thick line in the center represents the mean ROC curve over 101 cross-validations, while the shaded area 
represents one standard deviation from the mean. 
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should become less relevant as the time between their measurement and 
the event increases. The AUC for the random forest models trained with 
non-reduced signal features (Fig. 6(c): pink curve) performed compa
rably to those trained with reduced signal features (Fig. 6(c): cyan 
curve) for prediction windows of 1, 2, 4, and 12 h. The AUC for the 
random forest models trained on non-reduced signal features was 
greater than the AUC for random forests trained on tensor-reduced 
signal features for prediction windows of a half-hour and 8 h. Howev
er, when EHR features are included, this trend is reversed – the tensor- 
reduced signal features significantly outperform the non-reduced fea
tures across all windows. For the models trained with tensor-reduced 
signal features and the model trained with non-reduced signal fea
tures, there is a noticeable drop in AUC for a 2-h prediction window, 
followed by an increase that leads to a noticeable peak in performance 
with an 8-h prediction window. For the model trained with tensor- 
reduced signal features (Fig. 6(c): cyan curve), the AUC score at the 1- 
h prediction window is better than the AUC score for a half-hour pre
diction window. 

The LUCCK models trained with the combination of tensor-reduced 
signal features and EHR features (Fig. 6(d): green curve) outperformed 
the LUCCK model trained on tensor-reduced signal features (Fig. 6(d): 
cyan curve) and the LUCCK model trained on the non-reduced signal 
features (Fig. 6(d): pink curve). For this best model, the highest AUC 
score of 0.87 was achieved at prediction windows of 0.5 h and 1 h, 
respectively. These two scores are not statistically different. The AUC 
values of 0.85, 0.84, and 0.85 for prediction windows of 2, 4, and 8 h, 
respectively, are not statistically significantly different from each other. 
The lowest AUC was achieved with a prediction window of 12 h. The 
LUCCK models trained with non-reduced signal features achieve AUC 
scores that are comparable to the corresponding model trained on 
tensor-reduced signal features for prediction windows of 2, 4, 8, and 
12 h. The LUCCK models trained with non-reduced signal features ach
ieve AUC scores that are statistically significantly better than the cor
responding AUC scores of the models trained on tensor-reduced signal 
features for prediction windows of 0.5 h and 1 h. When EHR features are 
added to the non-reduced signal features, the performance improves 
slightly for most windows but there is a noticeable drop for the 2- and 4- 
h windows. For the models trained with tensor-reduced signal features 
and the models trained with non-reduced signal features (Fig. 6(d)), the 

minimum AUC scores occur with a 2-h prediction window, followed by 
an increase in performance that peaks at the 8-h prediction window. The 
AUC scores at these 8-h markers are statistically significantly different 
from the AUC obtained with the 2-h prediction window. 

The Adaboost models performed better when the signals were not 
reduced: the best AUC was achieved for the model trained with non- 
reduced signals and EHR features during the half-hour window 
(Fig. 6). In models with non-reduced signal features, with or without 
EHR, Adaboost was the best performing model overall, whereas its 
performance was worse with the tensor-reduced signal features. Across 
all feature sets, there was a noticeable peak in the 8-h window with the 
Adaboost models, a trend also observed in some SVM, RF and LUCCK 
models. 

4.1. Advantage of tensor-based dimensionality reduction 

From Fig. 6(a) (blue/cyan and red/pink curves) it can be observed 
that the tensor-based dimensionality reduction method leads to 
increased model performance for Naive Bayes, Random Forest, and 
LUCCK, especially when EHR features are included. For the Naive Bayes 
model, the tensor reduction method yields an average increase of 0.09 
when compared to the model trained on all signal-based features. With 
the EHR features included, the tensor reduction yielded an even more 
dramatic improvement of 0.16 in average AUC compared to the models 
with non-reduced signal features. For both LUCCK and RF models with 
EHR included, the tensor reduction yielded an average increase in the 
AUCs of 0.09 each. Although this trend did not hold for the SVM and 
Adaboost models, the improvement achieved by tensor reduction on the 
Naive Bayes, LUCCK, and RF was larger than the reduction observed in 
SVM and Adaboost model performance. An advantage of this dimen
sionality reduction method is that it transforms the signal-based features 
from a set of 5150 into a much smaller set consisting of 430 features on 
average (see Section 3.6.3 for further details). This 92% reduction in the 
number of features results in a much simpler model that achieves sta
tistically significant higher AUC values for each prediction window. 

4.2. Incorporation of EHR data into modeling process 

For each type of machine learning algorithm in this study, the models 

Fig. 8. (a) AUC and (b) F1 scores of the final tuned LUCCK, Random Forest, SVM, and Naive Bayes models trained with tensor-reduced signal features and EHR 
features. The vertical bar at each data point indicates the 95% confidence interval obtained from the iterations. 
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Fig. 9. (a) Naive Bayes (b) SVM (c) Random Forest, (d) LUCCK and (e) Adaboost models trained according to the multimodal pipeline proposed in this manuscript 
and a pipeline proposed by Melillo et al. [17] with and without CFS. The vertical bar at each data point indicates the 95% confidence interval obtained from the 101 
cross-validations. 
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trained using the combination of tensor-reduced signal features and EHR 
features consistently outperformed models trained on the tensor- 
reduced signal features and models trained on the non-reduced signal 
features. 

For Naive Bayes, the incorporation of EHR data into the model 
yielded an increase in test set AUC by an average of 0.08 when compared 
to the model trained using reduced signal features alone, and an average 
increase of 0.17 when compared to the model trained only using non- 
reduced signal features. 

Random forest achieved an average increase of 0.10 in test set AUC 
through the combination of EHR and reduced tensor features when 
compared to the model trained on non-reduced signal features alone, 
and an average increase of 0.13 when compared to the random forest 
model trained only on the reduced signal features. 

LUCCK achieved an average increase of 0.12 in test AUC through the 
combination of EHR and reduced tensor features when compared to the 
LUCCK model trained only using non-reduced signal features, and an 
average increase of 0.15 when compared to the LUCCK model trained 
only using the reduced signal features. 

SVM achieved a 0.05 average increase in test AUC through incor
poration of EHR data when compared to the SVM model trained on non- 
reduced signal features alone, and an average increase of 0.10 when 
compared to the SVM model trained only with reduced signal features. 

Adaboost achieved a 0.05 average increase in test AUC by incorpo
rating EHR data when using non-reduced signal features and an average 
increase of 0.03 when using tensor-reduced signal features. 

From Fig. 8(a) it can be seen that the LUCCK model performed best, 
random forest performed second best, followed by the SVM model, and 
then the Naive Bayes model. The LUCCK and random forest models 
achieved higher AUC scores than SVM and Naive Bayes for all prediction 
windows. The LUCCK and random forest algorithms achieved compa
rable performance for prediction windows of 0.5, 1, 2, and 4 h. How
ever, for prediction windows of 8 and 12 h, the LUCCK model achieves a 
higher AUC than random forest. The SVM and Naive Bayes models 
achieved comparable performance for all prediction windows greater 
than 1.0 h. For the half-hour and 1-h prediction windows, SVM achieved 
higher AUC than Naive Bayes. 

Table 4 contains a summary of F1 scores for all models. LUCCK and 
random forest models achieve higher F1 scores than SVM and Naive 
Bayes models for all prediction windows (Fig. 8(b)). Furthermore, 
LUCCK and Random Forest achieve comparable F1 scores for prediction 
windows of 0.5, 1, 2, and 4 h; for 8 and 12 h, LUCCK achieves higher F1 
scores than random forest. SVM and Naive Bayes achieve comparable F1 
scores for prediction windows of 1, 4, 8, and 12 h. SVM achieved sta
tistically higher F1 score than Naive Bayes for a prediction window of a 
half-hour; however, for a prediction window of 2 h, Naive Bayes ach
ieves a statistically higher F1 score than SVM. 

4.3. Comparison with other methods 

A comparison of the performance of the proposed multimodal 
method to that proposed by Melillo et al. [17] when HRV and EHR 
features is depicted in Fig. 9. When compared with the proposed method 
without their feature selection method, CFS, the multimodal approach 
performed better with the LUCCK models, comparably with RF and 
worse with the Naive Bayes, Adaboost, and SVM models. However, 
when CFS was used for feature selection, the performance was consis
tently worse across all models. 

5. Discussion 

Naive Bayes, RF, and LUCCK machine learning methods consistently 
achieved their respective highest AUC scores when utilizing the com
bination of tensor-reduced signals and EHR features. On the other hand, 
Adaboost and SVM achieved better performance when non-reduced 
signal features were used along with the EHR. No matter whether 
tensor-reduced or non-reduced signals were used, the addition of EHR 
improved model performance. This is not surprising, as EHR features 
include clinical interventions, such as the administration of cardiovas
cular infusions or medications, which are directly related to patient 
recovery and outcomes. The inclusion of such information into a real- 
time clinical decision support system would be invaluable in providing 
comprehensive monitoring of patients. 

Among all models, LUCCK models trained with tensor-reduced sig
nals features and EHR performed best, achieving AUC scores equal to or 
greater than those achieved by the other models. The random forest 
models trained on tensor-reduced signals and EHR features was the 
second best. These two top performing models were nearly comparable 
in performance for prediction windows up to 4 h, after which random 
forest fared worse by comparison. An explanation for their ability to 
outperform the SVM and Naive Bayes models for all prediction windows 
is that LUCCK and random forest are equipped with internal mechanisms 
that weight or select the most informative features. In this study, the 
reduced feature set contained approximately 530 values, about three 
times the total number of samples available for training. In this situa
tion, additional feature selection is typically beneficial to the predictive 
modeling process, particularly in helping to avoid overfitting. The 
modeling results for the Naive Bayes algorithm (Fig. 6(a)) demonstrate 
that tensor-based dimensionality reduction can be useful for training 
machine learning models that lack an internal dimensionality reduction 
or feature selection process similar to random forest and LUCCK. 

For LUCCK, random forest, and the SVM models AUC scores gener
ally decreased as the size of the prediction window increased (Fig. 8(a)). 
In some cases, such as for prediction windows of 2, 4, and 8 h, LUCCK 
performed comparably well just before suffering a performance decrease 
at 12 h. This general trend is not unexpected since the information 
captured during the analysis window of fixed duration should be more 
predictive of events occurring in the short-term and less predictive of 
events occurring further into the future. With the exception of the in
crease in AUC from 0.5 h to 1 h, this trend is true of the Naive Bayes and 
Adaboost models as well. 

To explore mechanisms potentially explaining the increase in AUC 
when prediction windows were expanded from 0.5 h to 1 h, we exam
ined (i) relative ratios of each of the nine adverse event types contrib
uting to the model, across all prediction window sizes (as longer 
windows precluded analysis of early adverse events) and (ii) granularity 
of model features. Given that (i) inspection of relative ratios of adverse 
event types analyzed across varying prediction windows yielded no 
discernible trend and (ii) all model features were documented to the 
nearest minute, the observed increase in model performance from 0.5 h 
to 1 h warrants further study and our findings within this prediction 
window range should be interpreted with caution. 

Reducing the tensor data did not necessarily lead to an increase in 
AUC when compared to modeling with the non-reduced tensor features 
(Table 3). For example, the LUCCK model trained with the non-reduced 
tensor data outperformed the model trained on the reduced tensor data 
for prediction windows of 0.5 and 1 h. It is not surprising that tensor 
dimension reduction occasionally yields a slightly reduced performance, 
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since the dimension reduction process discards information, some of 
which is potentially useful, in transforming the tensor features from a set 
of 5150 to a smaller set of 430 on average. However, the addition of EHR 
data into the tensor-reduced signal feature set mitigated this problem, 
mostly outperforming the models trained with non-reduced signals and 
EHR features. 

The comparison to the method introduced in Melillo et al. [17] 
shows that the multimodal approach with tensor-reduced signals per
forms better than any models reduced using CFS, although they perform 
generally worse than the non-reduced HRV features with the exception 
of the LUCCK models. This suggests that the LUCCK is likely the best 
model to learn from the tensor-reduced signal information, whereas 
other machine learning models suffer from the loss of information 
resulting from tensor reduction. 

A challenge in utilizing current methods for tensor decompositions 
such as CP-ALS is that the resulting approximation to the tensor may 
change based on the chosen CP-ALS input parameters. We have 
attempted to rectify this by running CP-ALS 100 times during the 
training process to find the best fit. Though the approximation to the CP 
decomposition as determined by CP-ALS may not be unique, once the 
training process is complete the resulting factor matrices are used to 
transform testing samples through a deterministic process (up to nu
merical precision) that only utilizes matrix computations. Moreover, by 
repeating the experiments 101 times across as many shuffles of the 
dataset, we observe that we can achieve high model performance and 
low standard deviation. 

6. Conclusion 

In this study a multimodal approach that incorporates salient phys
iological signals and EHR data was proposed to predict the onset of 

hemodynamic decompensation. Advanced signal processing techniques 
such as Taut String estimation and Dual-tree Complex Wavelet Packet 
Transform were employed to extract complex and non-obvious patterns 
from ECG signals, while a novel tensor-based dimensionality reduction 
method was used to reduce the size of the resultant feature space. 
Various models were tested at multiple prediction windows, with the 
random forest model achieving an AUC of 0.89 in predicting adverse 
events a half-hour in advance, and the LUCCK model an AUC of 0.80 
12 h in advance. 

Overall, the analyses show that the information from continuous 
signals collected in the intensive care unit, combined with EHR data, can 
be utilized in the clinical decision support system for predicting adverse 
events several hours in advance, utilizing features that are not readily 
available for clinical interpretation. Such a system would allow for early 
interventions and could potentially lead to better patient outcomes in 
the critical care setting. 
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Appendix A. Adverse events 

Tables 5 and 6 below detail the number of positive patients and adverse events available at each prediction interval: 

Table 5 
The number of patients having an adverse event at each prediction interval length.  

Event/Interval (h) 0.5 1 2 4 8 12 

Low cardiac index 24 26 25 26 25 29 
Sustained low MAP 4 4 4 4 4 2 
Mortality 6 5 4 2 2 1 
Epinephrine bolus 5 5 5 4 4 4 
New inotrope 7 7 7 4 4 4 
Inotrope escalated 7 7 7 4 2 1 
New vasopressor 4 4 2 1 2 2 
New vasopressor 14 14 13 11 6 5 
Vasopressor escalated 0 1 0 1 0 1 
Total 71 73 67 57 49 49  

Table 6 
The total number of adverse events that occurred across all patients at various prediction interval lengths.  

Event/interval (h) 0.5 1 2 4 8 12 

Low cardiac index 31 32 31 31 28 31 
Sustained low MAP 4 4 4 4 4 2 
Mortality 6 5 4 2 2 1 
Epinephrine bolus 6 6 6 5 5 4 
New inotrope 8 8 8 5 5 5 
Inotrope escalated 7 7 7 4 2 1 
New vasopressor 4 4 2 1 2 2 
New vasopressor 19 19 16 14 8 6 
Vasopressor escalated 0 1 0 1 0 1 
Total 85 86 78 67 56 53  
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Appendix B. QRS complex detection method 

This appendix describes the peak detection method used in Section 3.2 to determine the QRS complexes within an ECG signal. The method consists 
of two steps: (1) filtering the signal to enhance the prominence of QRS complexes and (2) detecting the R-peaks. These steps are described in the 
following sections. 

B.1 Description of the PeakFilter algorithm 

The function PeakFilter takes an ECG signal f(t) as input and gives a function fpeak(t) with values in the interval [0, 1] as output. It is used by the 
peak detection algorithm PeakDetection discussed later. The PeakFilter function is designed so that the value of fpeak(t) is 1 if f(t) has a peak 
that is similar to a QRS complex. Below is the pseudocode for PeakFilter: 

Algorithm 1. Peak Filtering   

1: function PeakFilterf(t)
2: 

f1(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

max

⎧
⎨

⎩

(f(t) − f(t − wpeak))⋅
(f(t) − f(t + wpeak)),

0

√
√
√
√
√

3: fsmooth(t) = (f1★p)(t)
4: fnorm(t) = f1(t)/fsmooth(t)
5: fpeak(t) = Φ(fnorm(t))
6: return fpeak(t)
7: end function  

In line 2 of Algorithm 1, a nonlinear filter is applied to f(t) to obtain f1(t). This filter enhances the QRS complex. The function f1(t) will be nonzero if 
and only if either f(t) is larger than f(t − wpeak) and f(t + wpeak) (a positive peak) or f(t) is smaller than f(t − wpeak) and f(t + wpeak) (a negative peak). 
The value of 2⋅wpeak is approximately the width of the QRS complex. The normal width of a QRS complex is in the range of 70 and 100 ms. Conse
quently, the value wpeak = 0.035 s (and thus 2wpeak = 70 ms) was chosen. 

In line 3, f1(t) is smoothed by convolving it with the function p(t), depicted in Fig. 10. The linear filter used is defined by p(t) = (u★u★u)(t), where 
u(t) is the function that is equal to 1/wwindow on the interval window [− 1

2wwindow,
1
2wwindow] and equal to 0 outside this interval. The window width chosen 

for this analysis was wwindow = 1 s, but this parameter could be varied. 
Instead of p(t) one could also use another nonnegative convolutional filter that is normalized such that 

∫
p(t)dt = 1. 

In line 4 we normalize f1(t) to get fnorm = f1(t)/fsmooth. The normalization is local, so that the function fnormal is not affected by change of the 
amplitude of an ECG signal over time. 

In line 5 the thresholding function Φ(s) (depicted in Fig. 11 above) is applied to the normalized signal fnorm to obtain the output fpeak(t). The 
thresholding function used is a piecewise linear function defined by: 

Fig. 11. The threshold function Φ(s).  

Fig. 10. The linear filter function p(t).  
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Φ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if s ≤ 0;
s/b if 0 ≤ s ≤ b(c − a)/(b − a);
(s + a − c)/a if b(c − a)/(b − a) ≤ s ≤ c;
1 if s ≥ c

, (11) 

where 0 < a < c < b. The parameters used were a = 20, b = 200 and c = 27. The threshold c can be interpreted as indicating a definitive peak near 
time t if fnorm(t) ≥ c, with certainty decreasing for smaller values of fnorm(t). Other threshold functions Φ(s) could also be used. 

B.2 Description of the PeakDetection algorithm 

Calling the function PeakDetection(f(t), t0, tmax) finds all the R-peaks of the ECG signal f(t) in the interval (t0, tmax). The function outputs the 
timestamps t1, t2,…, ti where R-peaks are located. The time interval between two peaks is assumed to be in the interval [smin,smax]; this means that the 
heart rate is assumed to lie in the interval [60/smax,60/smin]. The values smin = .25 s and smax = 4 s were used in this study, i.e., the heart rate is between 
15 and 240 BPM. 

Algorithm 2. Peak Detection   

1: function PeakDetectionf(t), t0, tmax, smin, smax  

2: fsmooth(t) = 50
∫ t+.01

t− .01 f(t)dt  
3: fpeak(t) = PeakFilter(fsmooth(t))
4: i = − 1  
5: repeat 
6:  i = i+ 1  
7:  Choose s ∈ [smin, smax ] such that f(ti + s)α(s) is maximal  
8:  ti+1 = ti + s  
9: until ti+1 ≥ tmax  

10: return t1, t2,…, ti  
11: end function  

In line 2, the ECG signal f(t) is smoothed slightly using a moving average over window of length 0.02s to obtain fsmooth. The PeakFilter function 
(Algorithm 1) is applied to fsmooth(t) to obtain the peak signal fpeak(t) in line 3. 

In lines 7 and 8, ti+1 = ti + s is defined, where s ∈ [smin, smax] is chosen such that f(ti + s)α(s) is maximal. The function α(s) is called the anticipation 
function and influences which of the nearby peaks will be labeled as the next R-peak by the algorithm. The anticipation function used was 

α(t) = t2

1 + 100(t − 0.2)4 (12)  

for t ∈ [smin, smax], and is depicted in Fig. 12 below: 
The choice of α(s) in this study expresses that the interval between two consecutive peaks is more likely to be 0.5 s than 2 s. If f(t) has peaks of 

similar height at ti + .5 and ti + 2, then f(ti + 0.5)α(0.5) > f(ti + 2)α(2) (because α(0.5) > α(2)) and ti + 0.5 is considered more likely to be the next 
peak than ti + 2. However, if the peak at ti + 2 is much larger than the peak ti + 0.5 then f(ti + 0.5)α(0.5) < f(ti + 2)α(2) and ti + 2 is considered to be 
more likely as the next peak than ti + 0.5. 

In lines 7 and 8, i runs through successive integer values starting from 0. In the last iteration, i is minimal such that ti+1 > tmax and t1, t2,…, ti are all 
the peaks in the open interval (t0, tmax). 

Appendix C. Supplementary data 

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.artmed.2021.102032. 

Fig. 12. The anticipation function α(s).  
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