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Maximum Likelihood Estimation for Matrix Normal Models via Quiver
Representations\ast 

Harm Derksen\dagger and Visu Makam\ddagger 

Abstract. We study the log-likelihood function and maximum likelihood estimate (MLE) for the matrix normal
model for both real and complex models. We describe the exact number of samples needed to achieve
(almost surely) three conditions, namely a bounded log-likelihood function, existence of MLEs, and
uniqueness of MLEs. As a consequence, we observe that almost sure boundedness of the log-likelihood
function guarantees almost sure existence of an MLE, thereby proving a conjecture of Drton, Kuriki,
and Hoff [Existence and Uniqueness of the Kronecker Covariance MLE, preprint, arXiv:2003.06024,
2020]. The main tools we use are from the theory of quiver representations, in particular, results of
Kac, King, and Schofield on canonical decomposition and stability.
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1. Introduction. The following problem is fundamental in statistics in a variety of set-
tings: Among a collection of probability distributions (a.k.a. a statistical model), find the one
that best fits some empirical data. A probability distribution in the collection that maxi-
mizes the likelihood of the empirical data is called a maximum likelihood estimate (MLE).
Understanding the existence and uniqueness of MLEs is an important problem that is widely
studied. A related problem is understanding when the likelihood function (or, equivalently,
the log-likelihood function) is bounded above. Henceforth, we will simply say that likelihood
and log-likelihood functions are bounded to mean that they are bounded above.

In many settings, data is observed in two domains, and hence observations are naturally
matrix-valued. For such observations, one sometimes assumes that they follow amatrix normal
distribution. These matrix normal models have been used for various purposes in various
settings, for example, EEG/MEG data [6, 11, 32, 52], environmental data [23, 43], Netflix
movie rating data [1], and facial recognition [53]. The existence and uniqueness of MLEs, and
the boundedness of the likelihood function in matrix normal models for small sample sizes,
are important to understand in order to use them effectively in applications (see [21] for more
motivation). This problem was studied in many previous publications, e.g., [21, 22, 47, 49],
and each makes partial progress toward a solution.

More recently, Am\'endola et al. [2] uncovered connections between MLEs and stability
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notions in invariant theory and adapted results of B\"urgin and Draisma [8] to further improve
the results on sample size required for the (almost sure) boundedness of the log-likelihood
function. It is worthwhile to mention some interesting connections to invariant theory even
though they are not relevant to our paper. The flip-flop algorithm for computing an MLE for
matrix normal models [22, 42] is very similar to the algorithm proposed by Gurvits [28] for
computing the capacity of completely positive operators, which is well known to be equivalent
to null cone membership (a central problem in algorithmic invariant theory) for the so-called
left-right action. Even more curiously, the notion of geodesic convexity that has played a major
role in understanding invariant theoretic algorithms in recent years (see [9] and references
therein) can be seen in Wiesel's work [54] several years earlier in the setting of the flip-flop
algorithm.

Summary of our main results. In this paper, for matrix normal models (both real and
complex), we will compute the exact number of samples needed to achieve (almost surely)
three conditions, i.e., (1) a bounded log-likelihood function, (2) existence of MLEs, and (3)
uniqueness of MLEs, thereby completely resolving these problems. In particular, we prove
a conjecture of Drton, Kuriki, and Hoff [21] that almost sure boundedness of the likelihood
function implies almost sure existence of an MLE. We utilize heavily the connections between
invariant theory and MLEs and, in particular, the connection between matrix normal models
and geometric invariant theory for quiver representations discovered in [2]. Our techniques,
however, are significantly different from any of the previous work on these problems and rely
on the algebraic aspects of the theory of quiver representations. We also study a related
model called the model of proportional covariance matrices and give complete solutions to the
aforementioned problems in that case as well.

Before presenting precise definitions and results, we make a few remarks on the background
literature. We refer the reader to [2, 21] and references therein for more details regarding real
and complex Gaussian models, matrix normal models, their MLEs and associated thresholds,
as well as more motivation for the problems we discuss in this paper. A detailed explanation
and proofs of the connections between MLEs and invariant theory can be found in [2]. We point
the reader to the book [18] as a comprehensive introductory text on quiver representations.

1.1. Real Gaussian models. We denote by PDn the cone of n\times n positive definite matrices
with entries in \BbbR , the field of real numbers. For an n-dimensional Gaussian distribution with
mean 0 and covariance matrix \Sigma \in PDn, the density function is described by

f\Sigma (y) =
1\sqrt{} 

det(2\pi \Sigma )
e - 

1
2
y\top \Sigma  - 1y.

The inverse of the covariance matrix, i.e., \Sigma  - 1, is called the concentration matrix and denoted
by \Psi . A subset of \scrM \subseteq PDn defines a statistical model consisting of the n-dimensional
Gaussian distributions with mean 0 and concentration matrix \Psi \in \scrM . For Gaussian models,
the sample data is a tuple of vectors Y = (Y1, . . . , Ym) \in (\BbbR n)m, where m denotes the sample
size. The likelihood function LY : PDn \rightarrow \BbbR is given by

LY (\Psi ) =

m\prod 
i=1

f\Psi  - 1(Yi) = det

\biggl( 
\Psi 

2\pi 

\biggr) m/2

e - 
1
2

\sum m
i=1 Y

\top 
i \Psi Yi .
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340 HARM DERKSEN AND VISU MAKAM

The log-likelihood function lY : PDn \rightarrow \BbbR (up to an additive constant) is given by

lY (\Psi ) =
m

2
log det(\Psi ) - 1

2
Tr

\Biggl( 
\Psi 

m\sum 
i=1

YiY
\top 
i

\Biggr) 
.

An MLE is a point \widehat \Psi \in \scrM that maximizes the likelihood of observing the data Y , which
is equivalent to maximizing the log-likelihood function lY . In other words, \widehat \Psi is an MLE if
lY (\widehat \Psi ) \geq lY (\Psi ) for all \Psi \in \scrM . If the log-likelihood function is unbounded, then of course
MLEs do not exist. But even when the log-likelihood function is bounded, MLEs do not
necessarily exist, because the supremum of the log-likelihood function may not be achieved by
any particular concentration matrix. Finally, even when an MLE exists, there is no guarantee
that it is unique, as there may be many points in the model that achieve the maximum possible
value of the log-likelihood function.

For a Gaussian model \scrM \subseteq PDn, we define three threshold functions as follows:
(1) mltb(\scrM ) is the smallest integer m such that for d \geq m, the log-likelihood function

lY for Y = (Y1, . . . , Yd) \in (\BbbR n)d is bounded almost surely.
(2) mlte(\scrM ) is the smallest integer m such that for d \geq m, an MLE exists almost surely

for Y \in (\BbbR n)d.
(3) mltu(\scrM ) is the smallest integer m such that for d \geq m, there almost surely exists

a unique MLE for Y \in (\BbbR n)d.
In the above, almost surely means that the property holds away from a subset of (\BbbR n)d of

Lebesgue measure zero. We will refer to mltb,mlte, and mltu as maximum likelihood threshold
functions. By the above discussion, we observe that mltb \leq mlte \leq mltu.

1.2. Complex Gaussian models. The setting of complex Gaussian models is analogous to
the real case, with minor changes. The density function for a (circularly symmetric) complex
n-dimensional Gaussian with covariance matrix \Sigma \in PDn (the cone of positive definite n\times n
complex matrices) is given by

f\Sigma (y) =
1

det(\pi \Sigma )
e - y\dagger \Sigma  - 1y,

where y\dagger denotes the adjoint of y, i.e., conjugate transpose.
By a computation analogous to the real case, we see that the log-likelihood function (up

to an additive constant) is given by

lY (\Psi ) = m log det(\Psi ) - Tr

\Biggl( 
\Psi 

m\sum 
i=1

YiY
\dagger 
i

\Biggr) 
,

where Y \dagger 
i denotes the adjoint of Yi. Observe the similarity to the log-likelihood function for a

real Gaussian (except for the multiplicative factor of 1
2 , which can be ignored for the purposes

of understanding whether lY is bounded above, achieves its maximum, etc.). The rest of the
discussion follows analogously. In particular, MLEs and the maximum likelihood thresholds
are defined as above.

Remark 1.1. We will use the same notation for both real and complex models (for e.g.,
PDn, lY , etc.). It will always be clear whether we are in a real or a complex model, so there
will be no risk of confusion.D

ow
nl

oa
de

d 
08

/1
9/

23
 to

 1
55

.3
3.

31
.1

32
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MLE FOR MATRIX NORMAL MODELS 341

1.3. Matrix normal models and main results. If n = pq, we consider the subset

\scrM (p, q) = \{ \Psi 1 \otimes \Psi 2 | \Psi 1 \in PDp,\Psi 2 \in PDq\} \subseteq PDpq,

where \otimes denotes the Kronecker (or tensor) product of matrices. Such a statistical model is
called a matrix normal model. Sometimes it is also called a Kronecker covariance model. We
will consider both real and complex matrix normal models. As mentioned above, PDn denotes
positive definite real or complex matrices depending on whether we are working with real or
complex matrix normal models. When we want to differentiate between the real and complex
models, we will use \scrM \BbbR (p, q) and \scrM \BbbC (p, q), respectively. For matrix normal models, it will
be convenient to interpret the data as a p\times q matrix rather than a vector of size pq.

Drton, Kuriki, and Hoff [21] suggest that an exact formula for maximum likelihood thresh-
olds may be complicated because of the following behavior. For a sample size of two (i.e.,
Y = (Y1, Y2) \in Mat2p,q, where Matp,q denotes the space of p\times q matrices), consider the matrix
normal model \scrM (p, q):

\bullet If (p, q) = (5, 4), then we almost surely have a unique MLE.
\bullet If (p, q) = (6, 4), then we almost surely have an MLE that is not unique.
\bullet If (p, q) = (7, 4), then MLEs do not exist.
\bullet If (p, q) = (8, 4), then we almost surely have an MLE that is not unique.

We obtain exact formulas for the mltb,mlte, and mltu for both real and complex matrix
normal models \scrM (p, q). There are some delicate differences between real matrix normal
models and complex matrix normal models which we will elaborate on later; see also [2,
Example 4.2]. Nevertheless, the maximum likelihood threshold functions are the same for
both real and complex matrix normal models.

From the point of view of quiver representations, it is natural to fix the number of samples
and then study the boundedness of the log-likelihood function and existence and uniqueness
of MLEs as p and q vary. This subtle change in point of view offers a significantly different
perspective from earlier work. The added advantage is that the answer comes out very crisp!

Theorem 1.2. Suppose K = \BbbR or \BbbC . Let Y = (Y1, . . . , Ym) \in Matmp,q(K). Let d = gcd(p, q).
Then, for the matrix normal model \scrM K(p, q) the following hold:

(1) If p2 + q2  - mpq < 0, then there almost surely exists a unique MLE.
(2) If p2 + q2  - mpq \in \{ 0, d2\} , then an MLE exists almost surely. Furthermore, this

MLE is almost surely unique if and only if d = 1.
(3) In all other cases, the log-likelihood function is unbounded always (not just almost

surely). Consequently MLEs do not exist.

At this juncture, we invite the reader to verify that the complicated behavior in the exam-
ples mentioned above is consistent with the statement of the above theorem. We reformulate
Theorem 1.2 to compute exactly mltb,mlte, and mltu for \scrM (p, q). While this reformulation
not as elegant as Theorem 1.2, it remains fairly simple.

Theorem 1.3. Consider the (real or complex) matrix normal model \scrM (p, q). Let gcd(p, q) =

d, and let r = p2+q2 - d2

pq . Then the following hold:
(1) If p = q = 1, then mltb = mlte = mltu = 1.
(2) If p = q > 1, then mltb = mlte = 1 and mltu = 3.D
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(3) If p \not = q and r is an integer, then mltb = mlte = r. If d = 1, then mltu = r, and if
d > 1, then mltu = r + 1.

(4) If p \not = q and r is not an integer, then mltb = mlte = mltu = \lceil p
2+q2

pq \rceil .

Now, it is a simple observation that the Drton--Kuriki--Hoff conjecture [21] follows imme-
diately from the above theorems.

Corollary 1.4 (Drton--Kuriki--Hoff conjecture [21]). For the (real or complex) matrix normal
model \scrM (p, q), almost sure boundedness of the (log-)likelihood function implies almost sure
existence of MLEs. In particular, for all (p, q),

mltb(\scrM (p, q)) = mlte(\scrM (p, q)).

We also consider a variant of the matrix normal model, where one of the matrices is
diagonal, which is called the model of proportional covariance matrices (see, e.g., [24, 35]).
Let

\scrN (p, q) = \{ \Psi \otimes D | \Psi \in PDp, D \in PDq is a diagonal matrix\} \subseteq PDpq.

This model was also considered in [47] in the context of maximum likelihood threshold func-
tions. We have the following results.

Theorem 1.5. Consider the model \scrN (p, q). Let r = p/q.
(1) If r is an integer, then mltb = mlte = r. If q = 1, then mltu = r, and if q > 1, then

mltu = r + 1.
(2) If r is not an integer, then mltb = mlte = mltu = \lceil r\rceil .

Once again, we see that mltb(\scrN (p, q)) = mlte(\scrN (p, q)).

1.4. Organization. In section 2, we recall invariant theory and the connections to MLEs
for Gaussian group models. We also study stability notions when the underlying field is \BbbR 
or \BbbC and discuss an important result, i.e., Proposition 2.23, that allow us to transfer generic
stability results from \BbbC (where it is easier to prove things) to \BbbR (which is more important
for statistics). We discuss quiver representations, stability for quiver representations, and
canonical decompositions in sections 3, 4, and 5, respectively. In sections 6 and 7, we bring
together all the material developed in the previous sections to prove our main results on
maximum likelihood thresholds.

2. Invariant theory. Invariant theory is the study of symmetries captured by group ac-
tions. The roots of this subject can be traced back to the masters of computation in the 19th
century. At the turn of the 20th century, the work of Hilbert and Weyl brought invariant
theory to the forefront of mathematics and served to establish the foundations for modern
algebra and algebraic geometry.

The basic setting is as follows. Let G be a group. A representation of G is an action of
G on a (finite-dimensional) vector space V (over a field K) by linear transformations. This
is captured succinctly as a group homomorphism \rho : G \rightarrow GL(V ). In particular, an element
g \in G acts on V by the linear transformation \rho (g). We write g \cdot v or gv to mean \rho (g)v.
Throughout this paper, we will only consider the setting where G is a linear algebraic group
(over the underlying field K); i.e., G is an (affine) variety, the multiplication and inverse mapsD
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are morphisms of varieties, and the action is a rational action (or rational representation),
i.e., \rho : G \rightarrow GL(V ) is a morphism of algebraic groups.

The G-orbit of v \in V is the set of all vectors that we can get from v by applying elements
of the group, i.e.,

Ov := \{ gv | g \in G\} \subseteq V.

We denote by K[V ] the ring of polynomial functions on V (a.k.a. the coordinate ring of
V ). A polynomial function f \in K[V ] is called invariant if f(gv) = f(v) for all g \in G and
v \in V . In other words, a polynomial is called invariant if it is constant along orbits. The
invariant ring is

K[V ]G := \{ f \in K[V ] | f(gv) = f(v) \forall g \in G, v \in V \} .

The invariant ring has a natural grading by degree, i.e., K[V ]G = \oplus \infty 
d=0K[V ]Gd , where

K[V ]Gd consists of all invariant polynomials that are homogeneous of degree d. For v \in V , we
denote by Ov the closure of the orbit Ov.

Remark 2.1. To define the closure, we need to define a topology on V . In this paper, we
will only use the fields K = \BbbR or \BbbC . Hence, we will use the standard Euclidean topology on
V for orbit closures unless otherwise specified. This is not standard. In the literature, the
topology is usually taken as the Zariski topology. We will need to use the Zariski topology
at times, but we will be careful in specifying it each time. For K = \BbbC , the orbit closure
w.r.t. Euclidean topology agrees with the orbit closure w.r.t. Zariski topology (in the setting
of rational actions of reductive groups). We caution the reader that the interplay between the
Euclidean and Zariski topologies can be a bit tricky at times for K = \BbbR .

The stabilizer of the action at a point v \in V is defined to be the subgroup Gv := \{ g \in 
G | gv = v\} . Now we state a few important definitions.

Definition 2.2. Let K = \BbbR or \BbbC , and let G be an algebraic group (over K) with a rational
action on a vector space V (over K), i.e., \rho : G \rightarrow GL(V ). Let \Delta denote the kernel of the
homomorphism \rho . Give V the standard Euclidean topology. Then, for v \in V , we say v is

\bullet unstable if 0 \in Ov,
\bullet semistable if 0 /\in Ov,
\bullet polystable if v \not = 0 and Ov is closed, and
\bullet stable if v is polystable and the quotient Gv/\Delta is finite.

We point out again that our definitions may not be quite standard because we use the
Euclidean topology. However, this is the form that is best suited to our purposes. Clearly,
stable =\Rightarrow polystable =\Rightarrow semistable. A point is unstable if and only if it is not semistable.
Also, note that for any action of G on V , there is a natural diagonal action on the direct sum
V m by g \cdot (v1, . . . , vm) = (gv1, . . . , gvm) for all g \in G and vi \in V . Moreover, note that for any
group action \rho : G \rightarrow GL(V ), the notions of semistable, polystable, and stable are the same
whether we consider the action of G or the action of \rho (G).

Definition 2.3. Let K = \BbbR or \BbbC , and let G be an algebraic group (over K) with a rational
action on a vector space V (over K). Then, we say V is generically G-semistable (resp.,
polystable, stable, unstable) if there is a nonempty Zariski-open subset U \subseteq V such that every
v \in U is G-semistable (resp., polystable, stable, unstable).D
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The following notion of a null cone plays a central role in computational invariant theory.

Definition 2.4 (null cone). Let K = \BbbR or \BbbC , and let G be an algebraic group (over K)
with a rational action on a vector space V (over K). Then, the null cone is defined by

\scrN G(V ) := \{ v \in V | 0 \in Ov\} .

In other words, the null cone consists of all the unstable points in V .

2.1. MLEs for Gaussian group models and invariant theory. In this subsection, we will
briefly recall Gaussian group models and their connections to invariant theory. SupposeK = \BbbR 
or \BbbC . For any group G acting on Kn by linear transformations (i.e., \rho : G \rightarrow GLn), there is a
corresponding Gaussian group model \scrM G := \{ \rho (g)\dagger \rho (g) | g \in G\} \subseteq PDn. Note that adjoint is
the same as transpose for a matrix with real entries. The following result for Gaussian group
models was proved in [2] (we state a more general, but equivalent, form of their result).

Theorem 2.5 (see [2]). Let K = \BbbR or \BbbC , and let V be a finite-dimensional Hilbert space,
i.e., a vector space with a positive definite inner product (Hermitian when K = \BbbC ). Let
\rho : G \rightarrow GL(V ) be a rational action of G on V . Suppose \rho (G) \subseteq GL(V ) is a Zariski-closed
subgroup, closed under adjoints and nonzero scalar multiples. Let G\mathrm{S}\mathrm{L} \subseteq G be a subgroup
such that \rho (G\mathrm{S}\mathrm{L}) = \rho (G)\cap (SL(V )), and let Y \in V m be an m-tuple of samples. Then, for the
(diagonal) action of G\mathrm{S}\mathrm{L} and the model \scrM G, we have that

\bullet Y is semistable \Leftarrow \Rightarrow lY is bounded from above;
\bullet Y is polystable \Leftarrow \Rightarrow an MLE exists; and
\bullet Y is stable =\Rightarrow there is a unique MLE. Further, if K = \BbbC , the converse also holds,
i.e., there is a unique MLE =\Rightarrow Y is stable.

Remark 2.6. In the above result, it suffices to ask that \rho (G\mathrm{S}\mathrm{L}) and \rho (G) \cap (SL(V )) have
the same identity component since the stability notions for the action of either group will be
the same. Indeed, we will need this mild generalization in Theorem 2.7 and Proposition 2.9
below.

Matrix normal models are Gaussian group models. Consider the so-called left-right action
of G = GLp\times GLq on V = Matp,q given by the formula (P,Q) \cdot Y = PY Q - 1. The Gaussian
group model \scrM G equals \scrM (p, q). In this case, we can take G\mathrm{S}\mathrm{L} to be the subgroup SLp\times SLq.
This puts us squarely in the setup of semi-invariants for Kronecker quivers, which we will
discuss in detail in later sections.

Theorem 2.7 (see [2]). Let K = \BbbR or \BbbC . Let Y \in Matmp,q be an m-tuple of matrices.
Consider the left-right action of G\mathrm{S}\mathrm{L} = SLp\times SLq on Matmp,q. Then, w.r.t. the matrix normal
model \scrM (p, q),

\bullet Y is G\mathrm{S}\mathrm{L}-semistable \Leftarrow \Rightarrow lY is bounded from above;
\bullet Y is G\mathrm{S}\mathrm{L}-polystable \Leftarrow \Rightarrow an MLE exists; and
\bullet Y is G\mathrm{S}\mathrm{L}-stable =\Rightarrow there is a unique MLE. Further, if K = \BbbC , the converse also
holds, i.e., there is a unique MLE =\Rightarrow Y is G\mathrm{S}\mathrm{L}-stable.

The example below is a concrete illustration of the ideas in this paper that we will use to
prove our main result, i.e., Theorem 1.2.D
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Example 2.8. We take m = 2, p = 4, and q = 7. For generic (Y1, Y2) \in Mat24,7, we claim
(and justify below) that there is a change of basis (on the left and right) such that both Y1
and Y2 are simultaneously in a block form as below (where all nonstarred entries are 0):\left[    

\ast \ast 
\ast \ast 

\ast \ast \ast 
\ast \ast \ast 

\right]    
So, without loss of generality, let us assume Y1, Y2 are in the form above.

We write diag(d1, . . . , dk) to represent a diagonal k \times k matrix with diagonal entries
d1, . . . , dk. For t \not = 0, consider \lambda (t) = diag(t7, t7, t - 7, t - 7) \in SL4 and \mu (t) = diag(t6, t6, t6, t6,
t - 8, t - 8, t - 8) \in SL7. Let g(t) = (\lambda (t), \mu (t)) \in SL4\times SL7. Then, one can check that g(t) \cdot Yi =
\lambda (t)Yi\mu (t)

 - 1 = tYi follows from the pattern of zeros. Hence limt\rightarrow 0 g(t) \cdot Yi = 0. This would
mean that Y = (Y1, Y2) is not semistable because the origin is a limit point of its SL4\times SL7

orbit. Since generic points in Mat24,7 are unstable, all points in Mat24,7 are unstable because
the null cone is closed in the Zariski topology (see Lemma 2.12 below). In other words, for the
matrix normal model \scrM (4, 7), MLEs do not exist if we only have two samples, which agrees
with the observations in section 1.3 due to Drton, Kuriki, and Hoff.

The fact that a generic 2-tuple of 4\times 7 matrices can be simultaneously transformed into
the block form as mentioned above is a special case of the notion of canonical decomposition
which we discuss in section 5. This particular example concerns the 2-Kronecker quiver
and the dimension vector (4, 7). It can be deduced from [17, section 3] that the canonical
decomposition is (4, 7) = (1, 2) \oplus (1, 2) \oplus (2, 3) in the notation explained in section 5. The
ability to drive the matrices Yi to the origin in the limit using only diagonal group elements
is an example of the Hilbert--Mumford criterion; see Theorem 2.13. In fact, this style of
elementary argument could be used to prove Corollary 4.5.

The model of proportional covariance matrices \scrN (p, q) is also a Gaussian group model.
Consider the action of the group H = GLp \times Tq on V = Matp,q given again by (P,Q) \cdot Y =
PY Q - 1, where Tq \subseteq GLq denotes the subgroup of diagonal q\times q matrices (i.e., a q-dimensional
torus). It is easy to observe that the Gaussian group model \scrM H equals \scrN (p, q). Furthermore,
in this case one can take H\mathrm{S}\mathrm{L} to be the subgroup SLp\times STq where STq denotes the subgroup
of diagonal q \times q matrices with determinant 1. We remark here that this fits into the setup
of semi-invariants for star quivers (details will be in later sections). We record this result to
use in later sections.

Proposition 2.9. Let K = \BbbR or \BbbC . Let Y \in Matmp,q be an m-tuple of matrices. Consider
the aforementioned action of H\mathrm{S}\mathrm{L} = SLp\times STq on Matmp,q. Then, w.r.t. the model \scrN (p, q),

\bullet Y is H\mathrm{S}\mathrm{L}-semistable \Leftarrow \Rightarrow lY is bounded from above;
\bullet Y is H\mathrm{S}\mathrm{L}-polystable \Leftarrow \Rightarrow an MLE exists; and
\bullet Y is H\mathrm{S}\mathrm{L}-stable =\Rightarrow there is a unique MLE. Furthermore, if K = \BbbC , the converse
also holds, i.e., there is a unique MLE =\Rightarrow Y is H\mathrm{S}\mathrm{L}-stable.

2.2. Invariant theory over \BbbC . In this section, we take K = \BbbC and discuss a few notions
in invariant theory. An algebraic group G (over \BbbC ) is called a reductive group if every rationalD
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representation is completely reducible, i.e., it can be decomposed into a direct sum of irreduc-
ible representations. There are other equivalent definitions of reductive groups over \BbbC . For
rational actions of reductive groups, Hilbert [29, 30] showed that the invariant ring is finitely
generated.

Remark 2.10. The groups GLn = GLn(\BbbC ), SLn = SLn(\BbbC ) and finite groups are all re-
ductive groups (over \BbbC ). Direct products of reductive groups are reductive; in particu-
lar, G = GLn1 \times \cdot \cdot \cdot \times GLnd

is reductive. For any \sigma = (\sigma 1, . . . , \sigma d) \in \BbbZ d, the subgroup

G\sigma = \{ (g1, . . . , gd) \in G | 
\prod d

i=1 det(gi)
\sigma i = 1\} \subseteq G is also a reductive group. All groups that

we consider in this paper fall into the list of aforementioned examples. With reference to The-
orem 2.5, note that any complex Zariski-closed subgroup of GLn that is closed under adjoints
is a complex reductive group. On the other hand, if you have a Zariski-closed subgroup of
GL(V ) that is reductive, then there is a choice of inner product on V such that the group
is closed under adjoints; see [40]. Thus, reductivity can be thought of as a coordinate free
version of a Zariski-closed subgroup of GLn being closed under adjoints.

The first point to note about orbit closures is that since invariant polynomials are contin-
uous (w.r.t. either Zariski or Euclidean topology), any invariant polynomial will be constant
not just along orbits but their closures as well. Hence, any invariant polynomial will not be
able to distinguish two points v, w \in V if their orbit closures intersect. The converse is also
true for rational actions of complex reductive groups (see, e.g., [31, Lemma 3.8] for a proof).
We say a subset W \subseteq V is G-invariant if gW = W for all g \in G.

Theorem 2.11 (Mumford). Suppose G is a (complex) reductive group with a rational action
on V . Then for v, w \in V ,

Ov \cap Ow \not = \emptyset \Leftarrow \Rightarrow f(v) = f(w) \forall f \in \BbbC [V ]G.

In fact, a more general statement is true: if W1,W2 are G-invariant Zariski-closed subsets
with an empty intersection, then there exists f \in \BbbC [V ]G such that f(W1) = 0 and f(W2) = 1.

While the definition of the null cone (see Definition 2.4) is analytic in nature, it happens to
be an algebraic variety when we consider rational actions of reductive groups. For a collection
of polynomials \{ fi\} \subseteq \BbbC [V ], we denote by \BbbV (\{ fi\} ) the common zero locus of all the fi's.

Lemma 2.12. Let V be a rational representation of a (complex) reductive group G. Then

\scrN G(V ) = \BbbV 

\left(  \bigcup 
d\geq 1

\BbbC [V ]Gd

\right)  .

Proof. This follows immediately from Theorem 2.11.

An important result in understanding the null cone is the Hilbert--Mumford criterion,
which says that we can detect whether a point v \in V is in the null cone using 1-parameter
subgroups of G. A 1-parameter subgroup of G is simply a morphism of algebraic groups
\lambda : \BbbC \ast \rightarrow G.

Theorem 2.13 (Hilbert--Mumford criterion). Let G be a (complex) reductive group with
a rational action on V . Then v \in \scrN G(V ) if and only if there is a 1-parameter subgroup
\lambda : \BbbC \ast \rightarrow G such that limt\rightarrow 0 \lambda (t) \cdot v = 0.D
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Definition 2.14. Let V be a rational representation of a reductive group G. Then, we define
three subsets

V ss := \{ v \in V | v is G-semistable\} ,
V ps := \{ v \in V | v is G-polystable\} ,
V st := \{ v \in V | v is G-stable\} .

We call V ss (resp., V ps, V st) the semistable (resp., polystable, stable) locus. We will write
V G-ss, V G-ps, V G-st if we need to clarify the group.

Since the semistable locus is precisely the complement of the null cone, the following is
immediate from Lemma 2.12.

Corollary 2.15. Let V be a rational representation of a complex reductive group G. Then,
the semistable locus V ss is Zariski-open (but may be empty).

Similar statements are true for the polystable and stable loci.

Lemma 2.16. Let V be a rational representation of a complex reductive group G. Then,
the stable locus V st is Zariski-open, and the polystable locus V ps is Zariski-constructible, i.e.,
it is a union of Zariski locally closed subsets.

Proof. For a nonnegative integer r, define \scrZ r := \{ v \in V | dimOv \leq r\} . It is easy to show
that \scrZ r is Zariski-closed for all r. Let k = dimG/\Delta (where \Delta is the kernel of the action);
then clearly \scrZ k = V since no orbit can have dimension larger than k.

If V st is empty, then it is Zariski-open. If V st is nonempty, there is some w \in V st. Hence
Gw/\Delta is finite, which means that dimOw = k and that Ow is Zariski-closed (see Remark 2.1).
Hence Ow and \scrZ k - 1 are G-invariant Zariski-closed subsets with empty intersection, so by
Theorem 2.11, we have f \in \BbbC [V ]G such that f(Ow) = 1 and f(\scrZ k - 1) = 0. Consider Vf :=
\{ v \in V | f(v) \not = 0\} . Then, clearly Vf \cap \scrZ k - 1 = \emptyset because f(\scrZ k - 1) = 0. Take v \in Vf ; we
have dimOv = k since v /\in \scrZ k - 1. Further, we claim Ov is closed. If not, take v1 \in Ov \setminus Ov.
Then, we must have dimOv1 < dimOv = k, so v1 \in \scrZ k - 1. However, since v1 \in Ov, we have
f(v1) = f(v) \not = 0, which means that v1 \in Vf , which is absurd since Vf \cap \scrZ k - 1 is empty.
Hence Ov is closed. In other words, Vf \subseteq V st. To summarize, we have shown that for each
w \in V st, there is a Zariski-open subset Vf such that w \in Vf \subseteq V st, which means that V st is
Zariski-open.

Let \scrC r := \{ v \in \scrZ r \setminus \scrZ r - 1 | v is polystable\} . The above argument shows that \scrC k = V st is
Zariski-open in \scrZ k = V . A similar argument shows that \scrC r is Zariski-open in \scrZ r. In particular,
this means that \scrC r is a Zariski locally closed subset of V . Thus V ps = \cup k

i=1\scrC i is a union of
Zariski locally closed subsets, i.e., it is Zariski-constructible.

For an algebraic group G, we denote its connected component of the identity by G0,
which is an algebraic subgroup. The following result tells us that as far as stability notions
are concerned, we might as well restrict ourselves to the connected component of identity.

Lemma 2.17. Let V be a rational representation of a complex reductive group G. Let
G0 \subseteq G denote its connected component of identity. Then for v \in V , v is G-semistable/stable/
polystable if and only if it is G0-semistable/stable/polystable.D
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Proof. For semistability, observe that the Hilbert--Mumford criterion is the same whether
we use G or G0. For polystability, use the fact that the G-orbit is a finite disjoint union of
G0-orbits, each of which forms a connected component of the G-orbit. For stability, using
the orbit-stabilizer theorem (i.e., dimension of stabilizer + dimension of orbit = dimension of
the group), we see that dim(Gv) = dim((G0)v) since the G-orbit and G0-orbit have the same
dimension. Let \rho : G \rightarrow GL(V ) be the map that defines the action of G on V . Let \Delta denote
the kernel of \rho : G \rightarrow GL(V ). Then \Delta \cap G0 is the kernel of \rho restricted to G0. Both \Delta and
\Delta \cap G0 have the same Lie algebra, so they have the same dimension. Thus dim(Gv/\Delta ) = 0 if
and only if dim((G0)v/\Delta \cap G0) = 0. Thus v is G-stable if and only if it is G0-stable.

2.3. Invariant theory over \BbbR . Even though invariant theory is nicest when K = \BbbC , the
case of K = \BbbR is perhaps more important in the context of MLEs and statistics in general.
Hence, in this subsection we collect some results on invariant theory over the real numbers
which will help us ``transfer"" results from \BbbC to \BbbR . We also intend that this subsection serve as
a general reference for the reader who is not familiar with the intricacies of invariant theory
and algebraic groups over \BbbR . The following definitions are from [3].

For a complex (affine) varietyX, we denote its coordinate ring by \BbbC [X]. A complex (affine)
variety X with an \BbbR -structure (i.e., an \BbbR -subalgebra \BbbR [X] \subseteq \BbbC [X] such that \BbbR [X] \otimes \BbbR \BbbC =
\BbbC [X]) is called an (affine) \BbbR -variety. As a technical point, we identify a variety X with its
complex points X\BbbC (which can be viewed as algebra morphisms \BbbC [X] \rightarrow \BbbC ). A morphism
f : X \rightarrow Y of (affine) varieties is equivalent to a map on the coordinate rings f\ast : \BbbC [Y ] \rightarrow \BbbC [X].
The morphism f is said to be defined over \BbbR if f\ast (\BbbR [Y ]) \subseteq \BbbR [X]. The real points X\BbbR are the
points in X\BbbC (i.e., the algebra morphisms \BbbC [X] \rightarrow \BbbC ) that are defined over \BbbR . A complex
algebraic group G is called an \BbbR -group if it is an (affine) \BbbR -variety such that the multiplication
map and inverse map are defined over \BbbR , and its real points G\BbbR are an algebraic group over
\BbbR .

Remark 2.18. All varieties in this paper will be affine, so we will henceforth drop the term
affine.

For this entire subsection, let G be a connected reductive \BbbR -group. Let V be a rational
representation of G that is defined over \BbbR ---this means that V is an \BbbR -variety and that
\rho : G \rightarrow GL(V ) is defined over \BbbR . In particular, we get an action of G\BbbR on V\BbbR .

Remark 2.19. All the groups we consider in this paper will be connected reductive \BbbR -
groups, and all representations will be defined over \BbbR . Groups such as GLn and SLn (and
hence their direct products) are connected reductive and are naturally \BbbR -groups. The group
G\sigma defined in Remark 2.10 is also naturally an \BbbR -group and is connected if \sigma is indivisible,
i.e., gcd(\sigma 1, . . . , \sigma d) = 1.

The following proposition is a fundamental result.

Proposition 2.20. Let G be a connected reductive \BbbR -group. Let V be a rational representa-
tion of G that is defined over \BbbR . Then, the invariant ring for the action of G on V is obtained
by base change from the invariant ring for the action of G\BbbR on V\BbbR , i.e.,

\BbbR [V ]G\BbbR \otimes \BbbR \BbbC = \BbbC [V ]G.

In other words, Spec(\BbbC [V ]G) (also called the categorical quotient) is naturally an \BbbR -variety.D
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Proof. First, note that by definition \BbbR [V ] is the same as \BbbR [V\BbbR ], the coordinate ring of V\BbbR .
The action G \times V \rightarrow V gives a map \mu \BbbC : \BbbC [V ] \rightarrow \BbbC [G] \otimes \BbbC [V ]. Similarly, we get a map
\mu \BbbR : \BbbR [V ] \rightarrow \BbbR [G]\otimes \BbbR [V ] and note that \mu \BbbR \otimes \BbbR \BbbC = \mu \BbbC is simply a restatement that the action
is defined over \BbbR .

It is easy to see that the polynomial f \in \BbbC [V ] is G-invariant if and only if \mu \BbbC (f) = 1\otimes f .
Write f = f1+ if2 with fj \in \BbbR [V ]. Then, we see that \mu \BbbC (f) = \mu \BbbR (f1)+ i\mu \BbbR (f2). Thus \mu \BbbR (f1)
and \mu \BbbR (f2) are the real and imaginary parts of \mu \BbbC (f) which are 1\otimes f1 and 1\otimes f2, respectively.
So, for each j, we have \mu \BbbR (fj) = 1\otimes fj , which means that fj is G\BbbR -invariant. This proves \supseteq .

To prove \subseteq , it suffices to prove that \BbbR [V ]G\BbbR = \BbbR [V\BbbR ]
G\BbbR \subseteq \BbbC [V ]G. Indeed, observe that

the action of G on V gives an action of G on \BbbC [V ]. A function f \in \BbbC [V ] is G-invariant if and
only if g \cdot f = f for all g \in G (this is easy to see and only uses the fact that \BbbC is an infinite
field). Similarly, we have an action of G\BbbR on \BbbR [V\BbbR ] and f \in \BbbR [V\BbbR ]

G\BbbR if and only if g \cdot f = f
for all g \in G\BbbR . Now, suppose f \in \BbbR [V\BbbR ]

G\BbbR \subseteq \BbbC [V ]. Then, since g \cdot f = f for all g \in G\BbbR , and
G\BbbR is Zariski-dense in G (see, e.g., [46] or [3, Corollary 18.3]), we get that g \cdot f = f for all
g \in G, so f \in \BbbC [V ]G. Thus \BbbR [V\BbbR ]

G\BbbR \subseteq \BbbC [V ]G as required.

The following result is crucial for transferring our results for complex matrix normal models
to real matrix normal models. We will need some results from Lie algebras. The theory of
Lie algebras is well understood, and we do not intend to recall the theory here. We refer the
interested reader to standard references, e.g., [3, 4, 5, 51].

Proposition 2.21. Let G be a connected reductive \BbbR -group. Let V be a rational representa-
tion of G that is defined over \BbbR . Let v \in V\BbbR . Then v is semistable/polystable/stable for the
G\BbbR -action if and only if v is semistable/polystable/stable for the G-action.

Proof. We split up the argument and discuss each notion of stability separately.
\bullet Semistability: Suppose v is G-semistable. Then, there is a homogeneous polynomial
invariant f \in \BbbC [V ]G such that f(v) \not = 0. Write f = f1 + if2 where fj \in \BbbR [V ] for
j = 1, 2. By the above proposition, we have fj \in \BbbR [V ]G for j = 1, 2. Thus, fj(v) \not = 0
for some j. By homogeneity, fj(0) = 0. Since fi is G\BbbR -invariant, the G\BbbR -orbit closure
of v cannot contain the origin. For the converse, suppose v \in V\BbbR is G-unstable. Then,
by Theorem 2.13 there is a 1-parameter subgroup that drives v to 0 in the limit. By a
result of Birkes [7, Theorem 5.2], we can choose a 1-parameter subgroup defined over
\BbbR that drives v to 0 in the limit. Hence, v is G\BbbR -unstable.

\bullet Polystability: Suppose the G-orbit of v is closed in the Euclidean topology (and
hence in the Zariski topology; see Remark 2.1). Borel and Harish-Chandra [5, Propo-
sition 2.3] show that this implies that the G\BbbR -orbit of v is closed in the Euclidean
topology. Birkes showed that if the G\BbbR -orbit of v is closed in the Euclidean topology,
then the G-orbit is closed in the Zariski topology (and hence the Euclidean topology);
see [7, Corollary 5.3].

\bullet Stability: Stability is polystability along with the fact that the stabilizer (modulo the
kernel) is finite. We already know from above that v is G-polystable if and only if v is
G\BbbR -polystable. So, we only have to analyze the stabilizers. We will utilize heavily the
fact that the dimensions of Lie algebras reflect the dimensions of the groups themselves
(in both the real and complex settings). Let \Delta denote the kernel of the representation
\rho : G \rightarrow GL(V ).D
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Since Gv \supseteq \Delta , we see that Gv/\Delta is finite if and only if we have an equality of
Lie algebras Lie(Gv) = Lie(\Delta ). Since Gv (resp., \Delta ) is defined over \BbbR (see [51,
Proposition 12.1.2 and Corollary 12.1.3]), we get that (Gv)\BbbR (resp., \Delta \BbbR ) is a real
manifold whose dimension equals the complex dimension of Gv (resp., \Delta ); see [4, sec-
tion 5.2]. In fact, more is true: the Lie algebra of Lie((Gv)\BbbR ) (resp., Lie(\Delta \BbbR )) is a
real form of Lie(Gv) (resp., Lie(\Delta )); see [4, section 5.3]. In other words, we have
Lie((Gv)\BbbR )\otimes \BbbR \BbbC = Lie(Gv) and Lie(\Delta \BbbR )\otimes \BbbR \BbbC = Lie(\Delta ).
Since we have inclusions \Delta \subseteq Gv (and consequently \Delta \BbbR \subseteq (Gv)\BbbR ), we get that
Lie(Gv) = Lie(\Delta ) if and only if Lie((Gv)\BbbR ) = Lie(\Delta \BbbR ). It is perhaps trivial, but
nonetheless necessary, to observe that (Gv)\BbbR = (G\BbbR )v and \Delta \BbbR is the kernel of \rho \BbbR .
Thus Lie((Gv)\BbbR ) = Lie(\Delta \BbbR ) if and only if both (G\BbbR )v and \Delta \BbbR have the same di-
mension, which occurs if and only if (G\BbbR )v/\Delta \BbbR is finite (since (G\BbbR )v \supseteq \Delta \BbbR and real
algebraic groups have finitely many components).
To summarize, we have that Gv/\Delta is finite if and only if (G\BbbR )v/\Delta \BbbR is finite, so v is
G-stable if and only if it is G\BbbR -stable.

We write (V G-ss)\BbbR to denote the real points of the set of G-semistable points of V , i.e.,
(V G-ss)\BbbR = V G-ss\cap V\BbbR . We write (V\BbbR )

G\BbbR -ss to denote the G\BbbR -semistable points of V\BbbR . We will
use similar notation for polystable and stable loci as well. The following is immediate from
Proposition 2.21.

Corollary 2.22. We have (V G-ss)\BbbR = (V\BbbR )
G\BbbR -ss, (V G-ps)\BbbR = (V\BbbR )

G\BbbR -ps, and (V G-st)\BbbR =
(V\BbbR )

G\BbbR -st.

Recall the notions of generic G-semistability/polystability/stability from Definition 2.3.

Proposition 2.23. Let G be a connected reductive \BbbR -group. Let V be a rational representa-
tion of G that is defined over \BbbR . Then V is generically G-semistable (resp., G-polystable/stable)
if and only if V\BbbR is generically G\BbbR -semistable (resp., G\BbbR -polystable/stable).

Proof. Let X \subseteq V be a Zariski-constructible subset. Then it is easy to see that X contains
a dense Zariski-open subset of V if and only if X\BbbR = X \cap V\BbbR contains a dense Zariski-open
subset of V\BbbR . Now, the proposition follows from the fact that V ss, V ps, and V st are Zariski-
constructible (by Corollary 2.15 and Lemma 2.16) along with Corollary 2.22.

3. Quiver representations. The theory of quivers and their representations forms a rich
generalization of linear algebra. Numerous applications of quivers have been discovered in
various algebraic subjects, such as cluster algebras and cluster categories [19, 38], Schubert
calculus [15, 16, 45], moduli spaces, Donaldson--Thomas invariants, and cohomological Hall
algebras and noncommutative algebraic geometry (see [44] and references therein), and sym-
plectic resolutions (see [27] and references therein). More recently, the invariant theory of
quivers has played an influential role in areas of theoretical computer science, notably geo-
metric complexity theory and noncommutative identity testing [12, 13, 14, 25, 33, 34, 41],
Brascamp--Lieb inequalities [26], and simultaneous robust subspace recovery [10].

Let K denote the ground field. The reader should keep in mind that K = \BbbR or \BbbC . A
quiver Q is a directed acyclic graph, i.e., a set of vertices denoted Q0 and a set of arrows Q1.
For each arrow a \in Q1, we denote by ta and ha the tail vertex and head vertex of the arrow,
respectively. We will demonstrate all the basic notions and definitions in the following crucialD
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example of the m-Kronecker quiver \Theta (m) with two vertices x and y with m arrows a1, . . . , am
from y to x:

x y

a1

am

.

.

.

A representation V of Q is simply an assignment of a finite-dimensional vector space V (x)
(over a ground field K) for each x \in Q0 and of a linear transformation V (a) : V (ta) \rightarrow V (ha)
for each arrow a \in Q1. A morphism of quiver representations \phi : V \rightarrow W is a collection of
linear maps \phi (x) : V (x) \rightarrow W (x) for each x \in Q0 subject to the condition that for every
a \in Q1, the following diagram below commutes:

V (ta) V (ha)

W (ta) W (ha)

V (a)

\phi (ta) \phi ha

W (a)

A representation V of \Theta (m) is given by assigning vector spaces V (x) and V (y) to x
and y, and assigning m linear maps V (a1), . . . , V (am) from V (y) to V (x). A morphism
between two representations V and W of \Theta (m) is two linear maps \phi (x) : V (x) \rightarrow W (x) and
\phi (y) : V (y) \rightarrow W (y) such that \phi (x) \circ V (ai) = W (ai) \circ \phi (y) for all 1 \leq i \leq m.

A subrepresentation U of V is a collection of subspaces U(x) \subseteq V (x) such that for every
edge the linear map U(a) is simply a restriction of V (a). In particular, this means that the
image of U(ta) under V (a) will need to be contained in U(ha). For two representations V
and W , we define their direct sum V \oplus W to be the representation that assigns V (x)\oplus W (x)

to each vertex x and the linear map (
V (a) 0
0 W (a)

) for each arrow a \in Q1. Similarly, the notions

of direct summand, image, kernel, coimage, etc. are all defined in the obvious way; see [18]
for details. In summary, the category of quiver representations forms an abelian category.

The dimension vector of a representation V is dim(V ) = (dimV (x))x\in Q0 . So, for a
representation V of \Theta (m), its dimension vector is dim(V ) = (dim(V (x)), dim(V (y))). For
any representation V of a quiver Q, for each x \in Q0, picking a basis for V (x) identifies V (x)
with K\mathrm{d}\mathrm{i}\mathrm{m}(V (x)). Further, with this identification, every linear map V (a) is just a matrix of
size dim(V (ha))\times dim(V (ta)). Thus, we come to the following definition. For any dimension
vector \alpha = (\alpha (x))x\in Q0 \in \BbbN Q0 (where \BbbN = \{ 0, 1, 2, . . . , \} ), we define the representation space

Rep(Q,\alpha ) =
\bigoplus 
a\in Q1

Mat\alpha (ha),\alpha (ta) .

Any point V = (V (a))a\in Q1 \in Rep(Q,\alpha ) can be interpreted as a representation of Q
with dimension vector \alpha as follows: for each x \in Q0, assign the vector space K\alpha (x), and
for each arrow a \in Q1, the matrix V (a) describes a linear transformation from K\alpha (ta) to
K\alpha (ha). The base change group GL(\alpha ) =

\prod 
x\in Q0

GL\alpha (x) acts on Rep(Q,\alpha ) in a natural

fashion where GL\alpha (x) acts on the vector space K\alpha (x) assigned to vertex x. More concretely,
for g = (gx)x\in Q0 \in GL(\alpha ) and V = (V (a))a\in Q1 \in Rep(Q,\alpha ), the point g \cdot V \in Rep(Q,\alpha ) is
defined by the formula

(g \cdot V )(a) = ghaV (a)g - 1
ta .D
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The GL(\alpha ) orbits in Rep(Q,\alpha ) are in 1-1 correspondence with isomorphism classes of
\alpha -dimensional representations.

Consider the subgroup SL(\alpha ) =
\prod 

x\in Q0
SL(\alpha (x)) \subseteq GL(\alpha ). Then, the invariant ring for

the action of SL(\alpha ) on Rep(Q,\alpha ) is called the ring of semi-invariants,

SI(Q,\alpha ) = K[Rep(Q,\alpha )]\mathrm{S}\mathrm{L}(\alpha ).

For the m-Kronecker quiver \Theta (m), suppose we pick a dimension vector \alpha = (p, q) (we use
the convention that the first entry corresponds to vertex x); then the representation space

Rep(\Theta (m), (p, q)) = Matmp,q .

Now, GL(\alpha ) = GLp\times GLq, and the action is given by the formula

(g1, g2) \cdot (Y1, . . . , Ym) = (g1Y1g
 - 1
2 , . . . , g1Ymg - 1

2 ).

The orbits of this action correspond to isomorphism classes of (p, q)-dimensional represen-
tations of \Theta (m). The subgroup SL(\alpha ) is SLp\times SLq. First, observe that Y = (Y1, . . . , Ym) is
semistable/polystable/stable (for the action of SLp\times SLq) if and only if \lambda Y = (\lambda Y1, . . . , \lambda Ym)
is semistable/polystable/stable for \lambda \in K\ast . This is a simple consequence of the fact that the
action is by linear transformations. Thus, we see that whether Y = (Y1, . . . , Ym) is semistable,
polystable, or stable (for the action of SL(\alpha )) only depends on the isomorphism class of the
quiver representation it defines (i.e., the GL(\alpha )-orbit). This is the starting point of under-
standing the various stability notions from a representation theoretic perspective, which we
will discuss in more detail in the next section.

Remark 3.1. The space Rep(Q,\alpha ) is a representation of GL(\alpha ) and its various subgroups
such as SL(\alpha ). At the same time, we refer to a point V \in Rep(Q,\alpha ) also as a representation.
We advise the reader to keep in mind that we think of V as a representation of the quiver Q
to avoid confusion. Moreover, if V \in Rep(Q,\alpha )\BbbR =

\bigoplus 
a\in Q1

Mat\alpha (ha),\alpha (ta)(\BbbR ), then it can be
thought of as both a real and a complex representation of Q.

3.1. Indecomposability of modules over field extensions. Let A be a finite-dimensional
\BbbR -algebra, and let A-mod denote the category of finite-dimensional (left)-modules over A. We
denote by A\BbbC := A \otimes \BbbR \BbbC the \BbbC -algebra obtained by extending scalars. Let A\BbbC -mod denote
the category of finite-dimensional (left)-modules over A\BbbC . For any module M \in A-mod, let
M\BbbC := M \otimes \BbbR \BbbC \in A\BbbC -mod. The A\BbbC structure on M\BbbC is the obvious one gotten by extending
scalars. We can interpret M\BbbC as an A-module: M\BbbC = M\oplus iM , and hence we have M\BbbC \sim = M\oplus 2

as A-modules.
The Krull--Remak--Schmidt theorem says that modules in the category A-mod can be

decomposed as a direct sum of indecomposables, and this decomposition is essentially unique
in the sense that any two such decompositions have the same summands (counted with mul-
tiplicities). The Krull--Remak--Schmidt theorem holds for A\BbbC -mod as well. Note that an
indecomposable module is one that cannot be written as a direct sum of two or more (proper)
submodules and is not to be confused with an irreducible (or simple) module, which is a
module with no nontrivial submodules.D
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Lemma 3.2. Let M \in A-mod. If M\BbbC \in A\BbbC -mod is indecomposable, then M is indecom-
posable.

Proof. If M = M1 \oplus M2, then M\BbbC = (M1)\BbbC \oplus (M2)\BbbC is a decomposition of M\BbbC as A\BbbC -
modules.

We will need the following lemma.

Lemma 3.3. Let M \in A-mod. Suppose M\BbbC can be written as a direct sum of three or more
(nonzero) submodules (as an A\BbbC -module). Then M is not indecomposable as an A-module.

Proof. Let M\BbbC = N1 \oplus N2 \oplus \cdot \cdot \cdot \oplus Nd with d \geq 3. Each Ni is an A\BbbC -module summand,
and hence an A-module summand as well. If we further refine the Ni into a direct sum of
indecomposable A-modules, we can write M\BbbC = N \prime 

1 \oplus N \prime 
2 \oplus \cdot \cdot \cdot \oplus N \prime 

d\prime for some d\prime \geq d \geq 3,
where each N \prime 

i is an indecomposable A-module. Suppose M is indecomposable. The module
M\BbbC = M \oplus iM is an A-module. Hence, by the Krull--Remak--Schmidt theorem, we know that
any decomposition into indecomposables has to have exactly two summands (each of which is
isomorphic to M as A-modules). But this contradicts the fact that M\BbbC = N \prime 

1\oplus N \prime 
2\oplus \cdot \cdot \cdot \oplus N \prime 

d\prime 

is a decomposition with d\prime > 2 summands.

3.2. Quiver representations as modules over the path algebra. LetK denote the ground
field. For a quiver Q = (Q0, Q1), we will define the path algebra KQ. A path p of length k is
a sequence of k arrows akak - 1 . . . a1 such that t(ai+1) = h(ai) for 1 \leq i < k. The head vertex
of the path is h(ak) and the tail vertex is t(a1). We introduce trivial paths ex of length zero
for each x \in Q0 with h(ex) = t(ex) = x.

The path algebra KQ is a K-algebra with a basis labeled by all paths in Q. The multi-
plication is as follows. For paths p and q, their product p \cdot q is the concatenation of the two
paths if tp = hq, and 0 otherwise. For any representation V of Q over K, we can interpret
it as KQ-module \oplus x\in Q0V (x). For w \in V (x), and a path p = akak - 1ak - 2 . . . a1, the action is
given by p \cdot w = V (ak)V (ak - 1) . . . V (a1)w \in Vhp if tp = x, and 0 otherwise. This is, in fact,
an equivalence of categories; see [18] for details.

Of particular importance is the fact that if we take A = \BbbR Q, then A\BbbC = \BbbC Q, and hence
Lemma 3.3 applies.

4. Stability notions for quiver representations. We follow the conventions from [18] for
consistency. For this section, we let K = \BbbC . Let Q be a quiver with no oriented cycles
(self-loops are counted as oriented cycles). Let \alpha be a dimension vector. For any \sigma \in \BbbZ Q0

(which we call a weight), we have a character of GL(\alpha ), which we also denote \sigma by abuse of
notation. The character \sigma : GL(\alpha ) \rightarrow K\ast is given by \sigma ((gx)x\in Q0) =

\prod 
x\in Q0

det(gx)
\sigma (x). The

ring of semi-invariants has a decomposition

SI(Q,\alpha ) =
\bigoplus 

\sigma \in \BbbZ Q0

SI(Q,\alpha )\sigma ,

where SI(Q,\alpha )\sigma = \{ f \in SI(Q,\alpha ) | f(g \cdot x) = \sigma (g - 1)f(x) for all g \in GL(\alpha )\} .
We define the effective cone of weights

C(Q,\alpha ) := \{ \sigma \in \BbbZ Q0 | SI(Q,\alpha )m\sigma \not = 0 for some m \in \BbbZ >0\} .D
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For a weight \sigma and a dimension vector \beta , we define \sigma (\beta ) :=
\sum 

x\in Q0
\sigma (x)\beta (x). We point

out that every \sigma \in C(Q,\alpha ) must satisfy \sigma (\alpha ) = 0. For each 0 \not = \sigma \in C(Q,\alpha ) that is indivisible
(i.e., gcd(\sigma (x) : x \in Q0) = 1), we consider the subring

SI(Q,\alpha , \sigma ) := \oplus \infty 
m=0SI(Q,\alpha )m\sigma .

For a sincere dimension vector \alpha (i.e., \alpha (x) \not = 0 for all x \in Q0), it turns out that this
subring can also be seen as an invariant ring, i.e., SI(Q,\alpha , \sigma ) = K[Rep(Q,\alpha )]\mathrm{G}\mathrm{L}(\alpha )\sigma , where
GL(\alpha )\sigma = \{ g \in GL(\alpha ) | \sigma (g) = 1\} . Note that GL(\alpha )\sigma is a reductive group. It is well
known that the associated projective variety Proj(SI(Q,\alpha , \sigma )) defines a moduli space for the
\alpha -dimensional representations of Q; see [39].

We make a definition following King [39]. We follow the convention from [18] which is
consistent with our notational choices so far but differs from King's original convention by a
sign.

Definition 4.1 (King [39]). Let Q be a quiver with no oriented cycles, let V be a represen-
tation of Q, and let \sigma \in \BbbZ Q0 be a weight such that \sigma (dimV ) = 0.

\bullet V is \sigma -semistable if \sigma (\beta ) \leq 0 for all \beta \in \BbbZ Q0

\geq 0 such that V contains a subrepresentation
of dimension \beta .

\bullet V is \sigma -stable if \sigma (\beta ) < 0 for all \beta \in \BbbZ Q0

\geq 0 (other than 0 and dim(V )) such that V
contains a subrepresentation of dimension \beta .

\bullet V is \sigma -polystable if V = V1\oplus V2\oplus \cdot \cdot \cdot \oplus Vk such that Vi are all \sigma -stable representations.

Observe here that any \sigma -stable representation must be indecomposable, i.e., it cannot be
written as a direct sum of (proper) subrepresentations. Indeed, suppose V = V1 \oplus V2; then
0 = \sigma (dimV ) = \sigma (dimV1) + \sigma (dimV2). Thus at least one of \sigma (dimVi) \geq 0, and hence V ,
cannot be \sigma -stable. Also observe that if V is a direct sum V = V1 \oplus V2 \oplus \cdot \cdot \cdot \oplus Vk, then V
is \sigma -semistable (or \sigma -polystable) if and only if all the Vi are. Thus, in order to understand
whether a generic representation of dimension \alpha is \sigma -semistable/polystable/stable, it is useful
to understand how it decomposes as a direct sum of indecomposables, which is the topic of
discussion in the next section.

We now relate \sigma -stability notions to GL(\alpha )\sigma -stability notions.

Theorem 4.2 (King [39]). Let Q be a quiver with no oriented cycles, let \alpha \in \BbbZ Q0
>0 be a

sincere dimension vector, and let 0 \not = \sigma be an indivisible weight such that  - \sigma /\in C(Q,\alpha ). A
representation V \in Rep(Q,\alpha ) is \sigma -semistable (resp., \sigma -polystable/stable) if and only if V is
GL(\alpha )\sigma -semistable (resp., GL(\alpha )\sigma -polystable/stable).

King's original formulation is slightly different from the one above but can be seen to
be equivalent (details are given in Appendix A). Now, we proceed to discuss these stability
notions for the m-Kronecker quiver.

4.1. Stability notions for the \bfitm -Kronecker quiver. For the m-Kronecker quiver \Theta (m),
let us take \alpha = (p, q). Let p\prime = p/gcd(p, q) and q\prime = q/gcd(p, q). Then

(4.1) SI(\Theta (m), (p, q)) =

\infty \bigoplus 
k=0

SI(\Theta (m), (p, q))( - kq\prime ,kp\prime ).
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Indeed, observe that for \sigma \in \BbbZ 2 to be in the cone of effective weights C(\Theta (m), (p, q)), we
need \sigma (p, q) = 0. This means that any \sigma \in C(\Theta (m), (p, q)) must be a multiple of ( - q\prime , p\prime ).
As it turns out, nontrivial semi-invariants do not exist when we take a weight that is a
negative scalar multiple of ( - q\prime , p\prime ), which can be seen directly from the fundamental theorem
that describes semi-invariants of quivers in a determinantal fashion [16, 20, 50] (see also [18,
Theorem 10.7.1]) because there are no paths from x to y.

Further, this means that

\BbbC [Rep(\Theta (m), (p, q))]\mathrm{S}\mathrm{L}p \times \mathrm{S}\mathrm{L}q = \BbbC [Rep(\Theta (m), (p, q))]\mathrm{S}\mathrm{L}(\alpha ) = \BbbC [Rep(\Theta (m), (p, q))]\mathrm{G}\mathrm{L}(\alpha )( - q\prime ,p\prime ) .

In fact, we have the following result.

Lemma 4.3. Let \rho : GLp\times GLq \rightarrow GL(Rep(\Theta (m), (p, q))) be the left-right action. Let
\alpha = (p, q), and let p\prime = p/gcd(p, q) and q\prime = q/gcd(p, q). Then

\rho (SLp\times SLq) = \rho (GL(\alpha )( - q\prime ,p\prime )).

In particular, this means that \sigma -semistability (resp., polystability, stability) for \sigma = ( - q\prime , p\prime )
is the same as semistability (resp., polystability, stability) for the SLp\times SLq-action.

Proof. Since SLp\times SLq \subseteq GL(\alpha )( - q\prime ,p\prime ), we only need to show \supseteq . Suppose (g, h) \in 
GL(\alpha )( - q\prime ,p\prime ). This means that det(g)q

\prime 
= det(h)p

\prime 
. Note that \rho (g, h) = (g \otimes (h - 1)\top )\oplus m.

Without loss of generality, we can assume that det(g) = 1 (otherwise, choose a \lambda such
that det(\lambda g) = 1 and replace (g, h) with (\lambda g, \lambda h)). Thus, we have det(h)p

\prime 
= 1. Thus

det(h) = e2\pi in/p
\prime 
for some n. Now, choose an integer t such that t \equiv 0 mod q\prime and t \equiv  - n

mod p\prime . Such a t exists by the Chinese remainder theorem since p\prime and q\prime are coprime. Let
\mu = e2\pi it/dp

\prime q\prime , where d = gcd(p, q) = p/p\prime = q/q\prime . Then det(\mu g) = \mu p = e2\pi it/q
\prime 
= 1 and

det(\mu h) = \mu q \cdot e2\pi in/p\prime = e2\pi it/p
\prime \cdot e2\pi in/p\prime = 1. Now, observe that \rho (\mu g, \mu h) = \rho (g, h) and that

\mu g \in SLp and \mu h \in SLq.
Further, we observe that for \sigma = ( - q\prime , p\prime ), GL(\alpha )\sigma -semistability (resp., polystability, sta-

bility) is equivalent to \sigma -semistability (resp., polystability, stability) because  - \sigma /\in C(Q,\alpha )
follows from (4.1) above.

From Lemma 4.3 and Theorem 4.2, we deduce the following.

Corollary 4.4. Consider the G = SLp\times SLq-action on Rep(\Theta (m), (p, q)), and let \sigma =
( - q\prime , p\prime ), where p\prime = p/gcd(p, q) and q\prime = q/gcd(p, q). A representation V \in Rep(\Theta (m), (p, q))
is

\bullet semistable if and only if \sigma (\beta ) \leq 0 for all dimension vectors \beta such that V has a
subrepresentation of dimension \beta ;

\bullet stable if and only if \sigma (\beta ) < 0 for all dimension vectors \beta (other than 0 and (p, q))
such that V has a subrepresentation of dimension \beta ;

\bullet polystable if and only if V is a direct sum of \sigma -stable representations.

A simple corollary of the above is the following, which will be very useful.

Corollary 4.5. Let V \in Rep(\Theta (m), (p, q)). Suppose V = V1 \oplus V2 \oplus \cdot \cdot \cdot \oplus Vk is the decompo-
sition of V into indecomposables, and let \beta i = dim(Vi). If for some i and j, \beta i and \beta j are
linearly independent, then V is unstable (w.r.t. SLp\times SLq-action).D
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Proof. Let \sigma = ( - q\prime , p\prime ), where p\prime = p/gcd(p, q) and q\prime = q/gcd(p, q). Then, by Lemma 4.3,
if V is to be semistable, then \sigma (\beta i) \leq 0 for all i, and furthermore, \sigma (

\sum 
i \beta i) = \sigma ((p, q)) = 0.

This means that \sigma (\beta i) = 0 for all i. However, the kernel of \sigma is clearly 1-dimensional, so both
\beta i and \beta j cannot be in the kernel if they are linearly independent.

5. Canonical decomposition. For this section, we assume K = \BbbC . Let Q be a quiver with
no oriented cycles, and let \alpha be a dimension vector. Every representation V \in Rep(Q,\alpha ) can
be decomposed into a direct sum V = V1 \oplus V2 \oplus \cdot \cdot \cdot \oplus Vk where each Vi is an indecomposable
representation. The Krull--Remak--Schmidt theorem tells us that the summands that occur in
any such decomposition are isomorphic (up to permutation). Of course, this decomposition
will be different for different choices of V \in Rep(Q,\alpha ), but for a (nonempty) Zariski-open
subset of Rep(Q,\alpha ), the dimension vectors of the indecomposables in the decomposition will
be the same. This brings us to the definition of canonical decomposition that was first given
by Kac.

Definition 5.1 (canonical decomposition [36, 37]). We write \alpha = \beta 1 \oplus \cdot \cdot \cdot \oplus \beta k and call it
the canonical decomposition if a generic representation V \in Rep(Q,\alpha ) decomposes as a direct
sum of indecomposables whose dimension vectors are \beta 1, . . . , \beta k.

The existence and uniqueness of canonical decomposition requires a brief argument, and
we refer the reader to [18]. To fully understand canonical decomposition, we need to recall
the notion of roots. We need to define a bilinear form on \BbbR Q0 . For \alpha , \beta \in \BbbR Q0 , we define

\langle \alpha , \beta \rangle =
\sum 
x\in Q0

\alpha (x)\beta (x) - 
\sum 
a\in Q1

\alpha (ta)\beta (ha).

Definition 5.2. A dimension vector \alpha is called a root if there is an indecomposable repre-
sentation of dimension \alpha . A root is called real if \langle \alpha , \alpha \rangle = 1, isotropic if \langle \alpha , \alpha \rangle = 0, and non-
isotropic imaginary if \langle \alpha , \alpha \rangle < 0. Further, it is called a Schur root if there exists a nonempty
Zariski-open subset of Rep(Q,\alpha ) such that every representation in it is indecomposable. Note
that isotropic roots are also considered imaginary roots.

For the rest of this section, we fix a quiver Q with no oriented cycles. We will recall some
standard results. First, we give two lemmas that are straightforward; see [17, 18].

Lemma 5.3. For any Schur root \alpha , its canonical decomposition is \alpha = \alpha .

Lemma 5.4. Suppose \alpha = \beta 1 \oplus \beta 2 \oplus \cdot \cdot \cdot \oplus \beta k is the canonical decomposition of \alpha . Then
each \beta i is a Schur root.

We now state a theorem of Schofield that will be very useful to us.

Theorem 5.5 (Schofield [48]). Suppose \alpha = \beta 1\oplus \beta 2\oplus \cdot \cdot \cdot \oplus \beta k is the canonical decomposition
for \alpha . Then the canonical decomposition for m\alpha is

m\alpha = [m\beta 1]\oplus [m\beta 2]\oplus \cdot \cdot \cdot \oplus [m\beta k],

where [m\beta ] = \beta \oplus m if \beta is a real or isotropic Schur root, and [m\beta ] = m\beta if \beta is a nonisotropic
imaginary Schur root.D
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Corollary 5.6. Suppose \alpha = \beta \oplus m1
1 \oplus \beta \oplus m2

2 \oplus \cdot \cdot \cdot \oplus \beta \oplus mk
k is the canonical decomposition of

\alpha . For all i such that mi > 1, \beta i must be a real Schur root or an isotropic Schur root.

We state a definition.

Definition 5.7. Let \alpha be a dimension vector. Then, we call \alpha \sigma -stable (resp., \sigma -semistable/
polystable) if a generic representation of dimension \alpha is \sigma -stable (resp., \sigma -semistable/polystable).

It is easy to see that in order for \alpha to be \sigma -stable for any \sigma , it must be a Schur root.
Schofield proved the following result in the other direction which will be very useful to us.

Theorem 5.8 (Schofield [48]). Let \alpha be a Schur root. Then there exists 0 \not = \sigma \in C(Q,\alpha )
such that \alpha is \sigma -stable.

Corollary 5.9. Let \alpha be a dimension vector, and let \sigma be a weight. Suppose \alpha = \beta 1 \oplus \beta 2 \oplus 
\cdot \cdot \cdot \oplus \beta k is the canonical decomposition with \beta i being \sigma -stable for all i. Then, \alpha is \sigma -polystable.
Moreover, \alpha is \sigma -stable if and only if k = 1.

Proof. We have a map \phi : GL(\alpha ) \times 
\prod k

i=1Rep(Q, \beta i) \rightarrow Rep(Q,\alpha ) that takes
(g, (V (i))1\leq i\leq k) \mapsto \rightarrow g \cdot (V (1) \oplus V (2) \oplus \cdot \cdot \cdot \oplus V (k)). The fact that \alpha = \beta 1 \oplus \beta 2 \oplus \cdot \cdot \cdot \oplus \beta k
is the canonical decomposition means that \phi is dominant, i.e., its image Im(\phi ) contains a
(nonempty) Zariski-open subset of Rep(Q,\alpha ).

Now, the fact that each \beta i is \sigma -stable means that there is a nonempty Zariski-open subset
Ui \subseteq Rep(Q, \beta i) that consists of \sigma -stable representations. Let U = GL(\alpha )\times 

\prod k
i=1 Ui. Then for

any representation V \in \phi (U) \subseteq Rep(Q,\alpha ), it decomposes as a direct sum of representations
of dimension \beta 1, . . . , \beta k, each of which is \sigma -stable. Hence \phi (U) consists of \sigma -polystable rep-
resentations. Now, \phi (U) is Zariski-dense in Im(\phi ) which is Zariski-dense in Rep(Q,\alpha ). Thus
the Zariski-closure of \phi (U) is Rep(Q,\alpha ). Since U is constructible, its image under the map \phi 
is constructible (by Chevalley's theorem on constructible sets) and hence contains a (dense,
hence nonempty) Zariski-open subset of its closure, i.e., there exists a Zariski-open subset of
Rep(Q,\alpha ) that is contained in \phi (U). Thus \alpha is \sigma -polystable.

That \alpha is \sigma -stable if and only if k = 1 is obvious.

6. Matrix normal models. Let us explicitly compute the canonical decomposition for the
m-Kronecker quiver \Theta (m).

Proposition 6.1 (canonical decomposition for the m-Kronecker quiver). Consider the m-
Kronecker quiver \Theta (m), let \alpha = (p, q) be a dimension vector, and let d = gcd(p, q).

(1) If p2 + q2  - mpq < 0, then \alpha is a (nonisotropic) imaginary Schur root, and its
canonical decomposition is \alpha = \alpha .

(2) If p2 + q2  - mpq = 0, then \alpha 
d is an isotropic Schur root, and the canonical decom-

position is \alpha = (\alpha d )
\oplus d (note that \alpha 

d \in \BbbZ Q0

\geq 0).

(3) If p2 + q2  - mpq = d2, then \alpha 
d is a real Schur root, and the canonical decomposition

is \alpha = (\alpha d )
\oplus d.

(4) In all other cases (i.e., p2 + q2  - mpq > 0 but not equal to d2), the canonical
decomposition has at least two linearly independent dimension vectors.

Proof. First, observe that for a dimension vector \gamma = (a, b), we have \langle \gamma , \gamma \rangle = a2+b2 - mab.
The set of roots for \Theta (m) are precisely the dimension vectors (a, b) such that a2+b2 - mab \leq 1D
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[36]. All real roots and nonisotropic imaginary roots are Schur [36, Theorem 4] (note that
nonisotropic imaginary roots only occur for m \geq 3). To be precise, Kac shows that all real
and nonisotropic imaginary roots occur in a canonical decomposition, and hence they must be
Schur. Isotropic roots only occur for m = 2, and these are precisely (a, a). In this case, (1, 1)
is Schur, but the rest are of course not Schur. Moreover, observe that any real root (a, b) must
be indivisible, as otherwise it would not be possible for \langle (a, b), (a, b)\rangle = a2 + b2  - mab = 1.
Thus, all real and isotropic Schur roots are indivisible. Furthermore, we can conclude that if
(a, b) is indivisible, then (a, b) is a Schur root if and only if a2 + b2  - mab \leq 1.

Let us understand when the canonical decomposition of (p, q) has at least two linearly
independent dimension vectors and when it does not. If it does not have two linearly indepen-
dent dimension vectors, then all the dimension vectors in the canonical decomposition must
be parallel to \alpha , so \alpha = \lambda 1\alpha \oplus \lambda 2\alpha \oplus \cdot \cdot \cdot \oplus \lambda k\alpha is the canonical decomposition for some scalars
\lambda i. This means that \alpha is a scalar (not necessarily integral) multiple of a Schur root, i.e., \lambda 1\alpha .
So, let us now turn to understanding dimension vectors that are scalar multiples of Schur
roots.

Let p\prime = p/d and q\prime = q/d. We claim that (p, q) is a scalar (not necessarily integral)
multiple of a Schur root if and only if (p\prime , q\prime ) is a Schur root. The ``if"" is obvious, but we
have to prove the ``only if."" So, let us assume (p, q) is a multiple of a Schur root. Suppose
p2+ q2 - mpq < 0; then clearly both (p, q) and (p\prime , q\prime ) are nonisotropic imaginary Schur roots.
If p2 + q2  - mpq \geq 0, then (p, q) must be a multiple of a real or isotropic Schur root, and
since real/isotropic Schur roots are indivisible, that Schur root must be (p\prime , q\prime ). Note that as
a consequence of the above arguments, we get that (p, q) is a scalar multiple of a Schur root
if and only if it is an integral multiple of a Schur root.

Having proved the claim in the previous paragraph, we know that (p, q) is a multiple of
a Schur root if and only if p\prime 2 + q\prime 2  - mp\prime q\prime \leq 1 or, equivalently, p2 + q2  - mpq = d2 or \leq 0.
This is precisely the first three cases, and in these cases Theorem 5.5 tells us precisely what
the canonical decomposition has to be, depending on whether the Schur root (p\prime , q\prime ) is real,
isotropic, or nonisotropic imaginary. In all other cases, (p, q) is not a multiple of a Schur
root, and as argued above, its canonical decomposition will have two linearly independent
dimension vectors.

6.1. Maximum likelihood thresholds for complex matrix normal models. Let us prove
Theorem 1.2 for the case of K = \BbbC first.

Proof of Theorem 1.2 for K = \BbbC . For this proof, let G\mathrm{S}\mathrm{L} denote SLp\times SLq. For \sigma =
( - q\prime , p\prime ), we know that \sigma -stable/polystable/semistable is the same as G\mathrm{S}\mathrm{L}-stable/semistable/
polystable by Lemma 4.3.

For (1), (resp., (2)), observe (by Proposition 6.1) that \alpha (resp., \alpha 
d ) are Schur roots and

hence \pi -stable for some (indivisible) \pi by Theorem 5.8. Such a \pi must satisfy \pi (p, q) = 0
and so \pi must be \sigma = ( - q\prime , p\prime ) (naively, it could also have been (q\prime , - p\prime ), but this is not in
C(\Theta (m), (p, q)) as remarked before). Thus, from Corollary 5.9, we deduce that \alpha is \sigma -stable
(resp., \sigma -polystable) and further that in the case of (2), \alpha is \sigma -stable if and only if d = 1.
Applying Theorem 2.7, we get the required conclusion.

(4) follows immediately by combining Corollary 4.5, Proposition 6.1 and Theorem 2.7.D
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6.2. Maximum likelihood thresholds for real matrix normal models.

Lemma 6.2. Let Y \in Rep(\Theta (m), (p, q))\BbbR = Matmp,q(\BbbR ). If an MLE given Y is unique for
the real matrix normal model \scrM (p, q), then Y is indecomposable over \BbbR . In other words, it is
indecomposable when thought of as a representation over \BbbR or, equivalently, an \BbbR Q-module.

Proof. Let G = SLp\times SLq, so that G\BbbR = SLp(\BbbR ) \times SLq(\BbbR ). If an MLE given Y exists,
then Y is polystable. Hence, without loss of generality, assume Y is polystable. Moreover,
without loss of generality, assume Y is a point in the G\BbbR -orbit with minimal norm. Let (G\BbbR )Y
denote the stabilizer at Y .

There is a constant \lambda \in \BbbR \setminus \{ 0\} such that for each (g, h) \in (G\BbbR )Y , \lambda (g
\top g\otimes (h - 1)(h - 1)\top ) \in 

PDpq is an MLE; see [2, Proposition 5.2 and Remark 5.5]. There is a very minor change in
the formula because the action we use is slightly different from (yet equivalent to) the one
used in [2]. The two actions are related by an automorphism of SLq, given by h \mapsto \rightarrow (h - 1)\top ,
and we modify appropriately the formula for an MLE.

Clearly \lambda Ipq is an MLE, so if it is unique, then for all (g, h) \in (G\BbbR )Y , we must have
g\top g = \alpha Ip and h\top h = \alpha Iq for some 0 \not = \alpha \in \BbbR . Since g\top g and h\top h are positive definite, we
must have \alpha > 0, and since det(g) = det(h) = 1, we must have \alpha = 1. In other words, we
must have g\top g = Ip and h\top h = Iq, i.e., g and h are orthogonal matrices.

Suppose, on the contrary, that Y is decomposable over \BbbR . Interpreting this as a rep-
resentation over \BbbR for \Theta (m), we assign \BbbR p to the vertex x and \BbbR q to the vertex y, and to
each arrow ai, we assign the linear map Yi : \BbbR q \rightarrow \BbbR p. Now, ``Y is decomposable"" means
that there are decompositions \BbbR p = W (x)\oplus Z(x) and \BbbR q = W (y)\oplus Z(y), such that for each
i, Yi(W (y)) \subseteq W (x) and Yi(Z(y)) \subseteq Z(x). Consider dim(W ) = (dim(W (x)), dim(W (y)))
and dim(Z) = (dim(Z(x)), dim(Z(y))). Then since Y is \sigma -semistable, we must have that
dim(W ) = (ap, aq) and dim(Z) = (bp, bq) by Corollary 4.5 (to be precise, we have to complex-
ify everything to apply Corollary 4.5; we leave the details to the reader). Now, let c, d \in \BbbR >0

such that cadb = 1 and | c| , | d| \not = 1 (e.g., c = 2 and d = 2 - a/b). Let g \in SLp(\BbbR ) be the
linear map that is defined by g(v) = cv for v \in W (x) and by g(v) = dv for v \in Z(x), and
let h \in SLq(\BbbR ) be the linear map defined by h(v) = cv for v \in W (y) and by h(v) = dv for
v \in Z(y). Then, it is a simple check to see that (g, h) \in (G\BbbR )Y . However, clearly g and
h are not orthogonal matrices because they have eigenvalues with absolute value \not = 1. This
contradicts uniqueness of MLEs by the above discussion.

Thus, Y must be indecomposable over \BbbR .
Proof of Theorem 1.2 for K = \BbbR . Let G\mathrm{S}\mathrm{L} = SLp(\BbbC )\times SLq(\BbbC ), and so (G\mathrm{S}\mathrm{L})\BbbR = SLp(\BbbR )\times 

SLq(\BbbR ). By using Proposition 2.23, all the generic stability notions (Definition 2.3) carry over
without any change from the case of K = \BbbC to the case of K = \BbbR .

In particular, the statements regarding boundedness of the log-likelihood function and
existence of MLEs also carry over from K = \BbbC to K = \BbbR . The only issue that arises is in
terms of uniqueness of an MLE. Over the reals, stability implies uniqueness of MLEs but not
conversely. Thus, even when Rep(\Theta (m), (p, q))\BbbR is not generically (G\mathrm{S}\mathrm{L})\BbbR -stable, we might still
have almost sure uniqueness of MLEs. So, we need to look at the cases where we have generic
polystability but not generic stability. This happens exactly when d \geq 2 and p2 + q2  - mpq is
either 0 or d2. This is precisely why we proved the above lemma.

Now, suppose p2 + q2  - mpq = 0 or d2 and d \geq 3. Then, by Lemma 3.3, we get that aD
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generic point in Rep(\Theta (m), (p, q))\BbbR is decomposable over \BbbR and by Lemma 6.2 that MLE is
not unique.

Now, suppose p2 + q2  - mpq = d2 and d = 2. This is precisely the case (p, q) = 2\beta where
\beta is a real Schur root. This means that there is a unique indecomposable of dimension \beta ,
and it is defined over \BbbR ---this is because for a real Schur root, the representation space has
a Zariski-dense orbit corresponding to this unique indecomposable [18, Lemma 11.1.3]. This
unique indecomposable corresponds to an \BbbR Q-module (for Q = \Theta (m)) that we will call W .
Take a generic point Y \in Rep(\Theta (m), (p, q))\BbbR . Interpret this as an \BbbR Q-module, which we will
call M . Then, by genericity, we know that M\BbbC \sim = W\BbbC \oplus W\BbbC as \BbbC Q-modules. Hence M\BbbC \sim = W\oplus 4

as \BbbR Q-modules. Thus M\oplus 2 \sim = W\oplus 4 as \BbbR Q-modules. By the Krull--Remak--Schmidt theorem,
we get that M \sim = W\oplus 2 as \BbbR Q-modules. In other words, Y is decomposable over \BbbR , and hence
by Lemma 6.2, there is not a unique MLE.

Now, suppose p2 + q2  - mpq = 0 and d = 2. This happens precisely in the case of
(p, q) = (2, 2) and m = 2. This is a slightly tricky case, and it turns out that we cannot claim
uniqueness or nonuniqueness of MLEs generically. In fact, the subset of points having a unique
MLE is semi-algebraic and full-dimensional but not dense. Nevertheless, it remains that we
do not have almost sure uniqueness of MLEs; see [21, section 4] (in particular Corollary 4.6)
for a more thorough explanation of this behavior.

Thus every statement in the case of K = \BbbC transfers to the case of K = \BbbR .

7. Model of proportional covariance matrices. In this section, we will focus on the model
of proportional covariance matrices \scrN (p, q). Once again, we will first work with K = \BbbC (and
then transfer the result to K = \BbbR ). For this case, we consider the quiver \scrB (q,m) with vertices
x, y1, . . . , yq and m arrows from each yi to x. The quiver \scrB (q, 1) is pictured as follows:

y1
y2

yq

x
.
.
.

.

.

.

.

.

Let us first define an operation for quivers. For any quiver Q = (Q0, Q1), define Q[m] to
be the following quiver: Let its vertex set be Q0, the vertex set for Q. For each a \in Q1,

define m arrows a[1], . . . , a[m] in Q
[m]
1 such that ta = ta[i] and ha = ha[i] for all i. For example,

we have \scrB (q,m) = \scrB (q, 1)[m]. For any dimension vector \alpha \in \BbbZ Q0

\geq 0, we have Rep(Q[m], \alpha ) =

Rep(Q,\alpha )\oplus m. Further, the action of GL(\alpha ) on Rep(Q[m], \alpha ) = Rep(Q,\alpha )\oplus m is the diagonal
action obtained from the action on Rep(Q,\alpha ). The same holds for the action of any subgroup
of GL(\alpha ).

We use the convention that in a dimension vector for \scrB (q,m), the coordinates corre-
spond to x, y1, . . . , yq in order. If we take the dimension vector \alpha = (p, 1, 1, . . . , 1), then
Rep(\scrB (q, 1), \alpha ) can be identified with Matp,q. Let \sigma = ( - q\prime , p\prime , . . . , p\prime ) where (p\prime , q\prime ) =

1
\mathrm{g}\mathrm{c}\mathrm{d}(p,q)(p, q). Analogously to Lemma 4.3, we can prove that \sigma -semistability/polystability/

stability coincides with SLp\times STq-semistability/polystability/stability.D
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Since \scrB (q,m) = \scrB (q, 1)[m], by the above discussion we conclude the following.

Lemma 7.1. Consider the action of H\mathrm{S}\mathrm{L}=SLp\times STq on Matmp,q=Rep(\scrB (q,m), (p, 1, 1, . . . , 1)).

Let \sigma = ( - q\prime , p\prime , . . . , p\prime ) be a weight for \scrB (q,m), where (p\prime , q\prime ) = 1
\mathrm{g}\mathrm{c}\mathrm{d}(p,q)(p, q). Suppose Y \in 

Matmp,q. Then, Y is H\mathrm{S}\mathrm{L}-semistable/polystable/stable if and only if Y is \sigma -semistable/polystable/
stable.

Proof. This is analogous to Lemma 4.3.

Proposition 7.2. Let Q = \scrB (q,m), \alpha = (p, 1, 1, . . . , 1), and \sigma = ( - q\prime , p\prime , . . . , p\prime ) where
(p\prime , q\prime ) = 1

\mathrm{g}\mathrm{c}\mathrm{d}(p,q)(p, q). If mq < p, then every Y \in Rep(Q,\alpha ) = Matmp,q is \sigma -unstable. If

mq = p, then \alpha is \sigma -polystable (and \sigma -stable precisely when q = 1). If mq > p, then \alpha is
\sigma -stable.

Proof. Let mq < p, and let Y \in Rep(Q,\alpha ). We claim that there is a subrepresentation of
dimension \beta = (mq, 1, 1, . . . , 1). This is because from each vertex yi, there are m arrows, and
each one has a 1-dimensional image. There are mq of such 1-dimensional subspaces (one for
each arrow), so there is a subspace U \subseteq \BbbC p of dimension mq that contains all of these. This
gives a subrepresentation of dimension \beta . Now \sigma (\beta ) > 0, so \alpha is not \sigma -semistable.

Now, let mq = p, and let Y \in Rep(Q,\alpha ) be generic. Then, for each yi, the images of
the m arrows starting from yi form an m-dimensional subspace of \BbbC p (the vector space at
the vertex x). We get one such m-dimensional subspace for each yi (call it Ui), and hence
there are q of them. By genericity, we will have that \BbbC q = \oplus q

i=1Ui. This means that placing
\BbbC at the vertex yi, Ui at vertex x, and \BbbC 0 at all other vertices gives a subrepresentation,
and, in fact, a direct summand. Thus, Y is a direct sum of q indecomposables of dimensions
(m, 1, 0, . . . , 0), (m, 0, 1, . . . , 0), . . . , (m, 0, . . . , 1). It is straightforward to see (by genericity)
that each one of these summands is indecomposable, has no nontrivial subrepresentations, and
is \sigma -stable. Thus, Y is \sigma -polystable. In fact, it is easy to see that the canonical decomposition
is \alpha = (m, 1, 0, . . . , 0) \oplus (m, 0, 1, . . . , 0) \oplus \cdot \cdot \cdot \oplus (m, 0, . . . , 1) and that each of the dimension
vectors appearing in the canonical decomposition is a real Schur root that is \sigma -stable.

Now, let mq > p, and let Y \in Rep(Q,\alpha ) be generic. Similar arguments as above will
show that any subrepresentation has a dimension vector of the form \beta = (min\{ m(

\sum 
\epsilon i), p\} ,

\epsilon 1, \epsilon 2, . . . , \epsilon q), where \epsilon i \in \{ 0, 1\} . For each subrepresentation, we observe that \sigma (\beta ) < 0 unless
\beta = \alpha , when \sigma (\alpha ) = 0. Hence Y is \sigma -stable.

Proof of Theorem 1.5. We claim the following three statements. If mq < p, then the log-
likelihood function is unbounded. If mq = p, then (almost surely) an MLE exists and we have
almost sure uniqueness precisely when m = 1. If mq > p, then (almost surely) we have a
unique MLE. For K = \BbbC , they follow from Proposition 7.2, Lemma 7.1, and Proposition 2.9.
Transferring the result to K = \BbbR is analogous to Theorem 1.2. For the case mq = p, one
has to look into the proof of Proposition 7.2 to see that the canonical decomposition of (p, q)
consists of real Schur roots, so the argument parallels part (2) of Theorem 1.2.

Reformulating this in terms of maximum likelihood thresholds gives us the required con-
clusion.
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Appendix A. Equivalence of stability notions. In this appendix, we reconcile Theo-
rem 4.2 with King's original formulation [39].

Let Q be a quiver with no oriented cycles, let \alpha be a sincere dimension vector, i.e.,
\alpha (x) \not = 0 for all x \in Q0, and let \sigma \in C(Q,\alpha ) be a nonzero indivisible weight. Then, it is
easy to see that \BbbC [Rep(Q,\alpha )]\mathrm{G}\mathrm{L}(\alpha )\sigma =

\bigoplus 
n\in \BbbZ SI(Q,\alpha )n\sigma . But, in fact, \BbbC [Rep(Q,\alpha )]\mathrm{G}\mathrm{L}(\alpha )\sigma =\bigoplus 

n\in \BbbZ \geq 0
SI(Q,\alpha )n\sigma because we assume the quiver has no oriented cycles. This follows from the

fact that the form \langle  - , - \rangle is nondegenerate (see [18, Definition 2.5.3]) and that SI(Q, \alpha )\gamma \not = 0
implies that \gamma = \langle \beta , - \rangle for some dimension vector \beta (see [18, Theorem 10.7.1]). Now, since
we chose 0 \not = \sigma \in \BbbC (Q,\alpha ), we know that for some n \in \BbbZ >0, n\sigma = \langle \beta , - \rangle for some dimension
vector 0 \not = \beta \in \BbbZ Q0

\geq 0. So for m \in \BbbZ >0, we get that  - m\sigma =
\bigl\langle 
 - m

n \beta , - 
\bigr\rangle 
, but  - m

n \beta cannot be a
dimension vector, as it contains negative entries, so SI(Q,\alpha ) - m\sigma = 0 for all m \in \BbbZ >0.

Let \BbbC \sigma denote the 1-dimensional representation of GL(\alpha ) corresponding to \sigma , i.e., \BbbC \sigma = \BbbC 
as a vector space, and the linear action of GL(\alpha ) is given by g \cdot 1 = \sigma (g).

Proposition A.1. Let Q,\alpha , \sigma be as above. Then V \in Rep(Q,\alpha ) is GL(\alpha )\sigma -semistable/
polystable/stable if and only if (V, 1) \in Rep(Q,\alpha )\oplus \BbbC \sigma is GL(\alpha )-semistable/polystable/stable.

Proof. Let z denote the coordinate of \BbbC \sigma in Rep(Q,\alpha ) \oplus \BbbC \sigma . We split up the argument
and discuss each notion of stability separately.

\bullet Semistability: Suppose V is GL(\alpha )\sigma -semistable. Then there exists f \in SI(Q,\alpha )n\sigma 
such that f(V ) \not = 0. This means that \widetilde f = fzn is GL(\alpha )-invariant (with no constant
term) and \widetilde f(V, 1) = f(V ) \not = 0. So (V, 1) is GL(\alpha )-semistable.
Conversely, if \widetilde f(V, 1) \not = 0 for some \widetilde f that is GL(\alpha )-invariant and homogeneous (say of
degree m > 0), then write \widetilde f =

\sum m
i=0 fm - iz

i, with fj homogeneous of degree j for all
j. Then, each fm - iz

i is GL(\alpha )-invariant. For some i, we have that fm - iz
i does not

vanish on (V, 1). So, fm - i \in SI(Q,\alpha )i\sigma is homogeneous of degree (m  - i) such that
fm - i(V ) \not = 0. If i = m, this means that f0 is a constant, but f0 \in SI(Q,\alpha )m\sigma , which is
absurd because m\sigma \not = 0. Thus i < m, and so fm - i \in SI(Q,\alpha )i\sigma \in \BbbC [Rep(Q,\alpha )]\mathrm{G}\mathrm{L}(\alpha )\sigma 

is a homogeneous polynomial of positive degree that does not vanish on V . Thus, V
is GL(\alpha )\sigma -semistable.

\bullet Polystability: Suppose 0 \not = V is not GL(\alpha )\sigma -polystable. Then, by the (generalized)
Hilbert--Mumford criterion [18, Proposition 9.6.2] there exists a 1-parameter subgroup
\lambda : \BbbC \ast \rightarrow GL(\alpha )\sigma such that limt\rightarrow 0 \lambda (t)V = W whereW /\in GL(\alpha )\sigma \cdot V . This means that
limt\rightarrow 0 \lambda (t)(V, 1) = (W, 1). Now, we will show that (W, 1) /\in GL(\alpha ) \cdot (V, 1). Otherwise,
we have (W, 1) = g(V, 1) = (gV, \sigma (g)) for some g \in GL(\alpha ). Thus \sigma (g) = 1, i.e., g \in 
GL(\alpha )\sigma and gV = W and hence W \in GL(\alpha )\sigma \cdot V , which is a contradiction. So, (V, 1) is
not polystable. In the case V = 0, note that (0, 1) is not even GL(\alpha )-semistable if there
exists g \in GL(\alpha ) such that | \sigma (g)| < 1 (since that would mean limk\rightarrow \infty gk(0, 1) = (0, 0)).
It is easy to construct such a g \in GL(\alpha ) with our assumptions, i.e., Q has no oriented
cycles, \alpha is sincere, and \sigma is nonzero.
Conversely, suppose (V, 1) is not polystable. Then there is a 1-parameter subgroup \lambda of
GL(\alpha ) such that limt\rightarrow 0 \lambda (t)(V, 1) = (W, c), with (W, c) /\in GL(\alpha )(V, 1). Suppose c = 0;
then (W, 0) is easily seen to be unstable because all points are unstable for the action
of GL(\alpha ) on Rep(Q,\alpha ) if Q has no oriented cycles (as is the case for us). This would
mean that (V, 1) is not even GL(\alpha )-semistable, which means that V is not GL(\alpha )\sigma -D
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semistable and hence not GL(\alpha )\sigma -polystable. Hence, without loss of generality assume
c \not = 0 from now on. Now, the function t \mapsto \rightarrow \sigma (\lambda (t)) is a character of \BbbC \ast and has to be
of the form t \mapsto \rightarrow tk for some integer k. Since c = limt\rightarrow 0 t

k is defined, we must have
k \geq 0. If k = 0, we get c = 1, and if k > 0, we get c = 0. Since c \not = 0, we must have
c = 1 and \lambda (t) \in GL(\alpha )\sigma . This means that limt\rightarrow 0 \lambda (t)V = W , so W \in GL(\alpha )\sigma \cdot V .
But W /\in GL(\alpha )\sigma \cdot V , because if it were in GL(\alpha )\sigma \cdot V , then we would have gV = W
for some g \in GL(\alpha )\sigma , which means g(V, 1) = (W, 1) = (W, c), which is a contradiction.
Thus the orbit of V is not closed, and hence V is not polystable.

\bullet Stability: Since V is GL(\alpha )\sigma -polystable if and only if (V, 1) is GL(\alpha )-polystable,
we only need to understand the stabilizers. First, observe that if \Delta \subseteq GL(\alpha )\sigma is
the kernel for its action on Rep(Q,\alpha ), then \Delta is the kernel for the action of GL(\alpha )
on Rep(Q,\alpha ) \oplus \BbbC \sigma . Thus, all we need to do is show that the two stabilizers, i.e.,
GL(\alpha )(V,1) and (GL(\alpha )\sigma )V , have the same dimension. In fact, they are the same.
Indeed, g \in GL(\alpha )(V,1) if and only if g(V, 1) = (gV, \sigma (g)) = (V, 1), which happens if
and only if \sigma (g) = 1 and gV = V , which happens if and only if g \in (GL(\alpha )\sigma )V .

Now, we bridge the gap between the result stated in [39] and Theorem 4.2. In Theorem 4.2,
we have \sigma such that  - \sigma /\in C(Q,\alpha ). We have two cases.

Case 1. \sigma \in C(Q,\alpha ). In this case, King [39] showed that \sigma -semistability/polystability/
stability for V \in Rep(Q,\alpha ) was the same as the GL(\alpha )-semistability/polystability/
stability of (V, 1) \in Rep(Q,\alpha )\oplus \BbbC \sigma , which is equivalent to GL(\alpha )\sigma -semistability/
polystability/stability of V as we have shown above.

Case 2. \sigma /\in C(Q,\alpha ). In this case, we see that \BbbC [Rep(Q,\alpha )]\mathrm{G}\mathrm{L}(\alpha )\sigma = \BbbC since we also
assume  - \sigma /\in C(Q,\alpha ). Thus, every V \in Rep(Q,\alpha ) is GL(\alpha )\sigma -unstable. On the
other hand, King [39] showed that \sigma -semistability of V \in Rep(Q,\alpha ) is equivalent
to the existence of f \in SI(Q,\alpha )d\sigma for some d \in \BbbZ \geq 1 such that f(V ) \not = 0. But
as SI(Q,\alpha )d\sigma = 0 for all d \in \BbbZ \geq 1 (because \sigma /\in C(Q,\alpha )), we see that every V \in 
Rep(Q,\alpha ) is \sigma -unstable (i.e., not \sigma -semistable). Thus, in this case, Theorem 4.2
is clearly true.

Finally, we remark that the hypothesis on Q,\alpha , and \sigma cannot be entirely removed. For
example, if you take \sigma = 0, then for V = 0, it is easy to see that (V, 1) is GL(\alpha )-semistable,
but V is not GL(\alpha )\sigma -semistable.
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