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Abstract
It is often necessary to identify a pattern of observed craters in a single image of
the lunar surface and without any prior knowledge of the camera’s location. This so-
called “lost-in-space” crater identification problem is common in both crater-based
terrain relative navigation (TRN) and in automatic registration of scientific imagery.
Past work on crater identification has largely been based on heuristic schemes, with
poor performance outside of a narrowly defined operating regime (e.g., nadir pointing
images, small search areas). This work provides the first mathematically rigorous
treatment of the general crater identification problem. It is shown when it is (and
when it is not) possible to recognize a pattern of elliptical crater rims in an image
formed by perspective projection. For the cases when it is possible to recognize a
pattern, descriptors are developed using invariant theory that provably capture all
of the viewpoint invariant information. These descriptors may be pre-computed for
known crater patterns and placed in a searchable index for fast recognition. New
techniques are also developed for computing pose from crater rim observations and
for evaluating crater rim correspondences. These techniques are demonstrated on
both synthetic and real images.
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1 Introduction

Future lunar exploration missions are expected to rely on optical measurements
(e.g., images from a camera) to navigate independently of Earth-based operators.
Although the use of images for spacecraft navigation—called optical navigation
(OPNAV)—is a well-established practice for conventionally navigated spacecraft
[108, 109], autonomous on-board OPNAV remains an emerging technology. Recent
decades have witnessed great technological advancement and expanding acceptance
of autonomous vision-based navigation for the exploration of other celestial bodies
(e.g., Moon, Mars, asteroids). These advancements in real-time, on-board OPNAV
are exemplified by the technological progression from simple estimation of lan-
der velocity with the Mars Exploration Rover’s DIMES system in 2004 [19] to
autonomous feature tracking that will soon be demonstrated on the OSIRIS-REx
mission to asteroid Bennu [105] and during landing of the Mars Perseverance (Mars
2020) rover [64].

This work focuses on OPNAV for lunar missions using digital images captured
by a conventional camera (images from a pushbroom camera [47] are a different
problem and are not discussed here). Images from a conventional camera follow
the geometry of perspective projection. How to best use such images of the Moon
for navigation depends on many factors—with distance and lighting often being the
two most important considerations. It is usually best to use horizon-based OPNAV
[21, 26, 108] when far away from the Moon and when a large portion of the lunar
disk is contained within the image. As the vehicle gets closer to the Moon (e.g.,
low lunar orbit, lunar lander descent), it becomes more appropriate to observe spe-
cific landmarks on the lunar surface. These landmarks could be specific types of
morphological features (e.g., craters) or a patch of unique-looking terrain.

The principal difficulty with landmark-based OPNAV is the need to match points
in an image to points in an onboard map. This has led to the continued use of
horizon-based OPNAV at close distances where it would otherwise be better to use
surface features. It has also led to navigation with unknown landmarks [8, 23, 80,
137] or visual odometry [27]. Unfortunately, horizon-based OPNAV is not always
practical (especially at close ranges) and unknown landmarks do not generally pro-
vide full state observability. Consequently, the ability to match surface features to
a map is a required capability for autonomous vision-based navigation for many
missions.

Many landmark-based OPNAV algorithms rely on the real-time rendering of an
onboard digital elevation map (DEM) [3, 44, 64, 105]. The standard approach is
to render the expected appearance of landmark patches and then compare this to
regions of the navigation image, usually by means of a 2D cross-correlation. This,
however, requires the vehicle to carry onboard 3D models for each landmark patch
(and, sometimes, complete DEMs for certain portions of the body) and also have
the ability to render these patches in real-time. Further, the rendering step requires
a priori state knowledge, thus precluding this technique from supporting lost-in-
space landmark-based OPNAV. More troubling, however, is that the rendering-based
template matching approach feeds navigation state data into the measurement gener-
ation process, creating scenarios where corrupted navigation states render otherwise
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good images ineffectual—potentially leading to unnecessary filter reinitializations,
trajectory aborts (e.g., during lunar descent), or other undesirable events.

Landmark-based OPNAV using craters [18, 49, 86, 110] is an alternative strategy
that, when properly implemented, does not necessarily require a priori state data.
Furthermore, OPNAV with craters does not require onboard DEMs or an onboard
rendering capability. Instead, such systems require an image processing algorithm
to detect craters and a pattern matching algorithm to match these observations to a
catalog of known craters. This manuscript focuses on the second part (crater pattern
matching) of this problem.

There are two general classes of crater matching algorithms: (1) tracking and (2)
lost-in-space. In the case of crater tracking, it is possible to use a priori state informa-
tion to predict where catalog craters should appear in an image. These predictions are
used to associate observed craters with model craters through a variety of schemes of
varying sophistication. We generally find that explicit crater matching is undesirable
and more robust tracking performance is achievable using probabilistic techniques (as
exemplified by anonymous feature tracking (AFT) [88]). In the case of lost-in-space
crater matching, no a priori state information is available. Lost-in-space algorithms,
therefore, must be able to recognize a crater pattern from its appearance in an image
regardless of camera pose (i.e., camera position and attitude). Such a capability is
necessary for filter (re)initialization. It is also useful in providing state-independent
measurements (if required) or a state-independent verification of crater tracking cor-
respondences. This work focuses on solving the lost-in-space crater identification
problem.

We briefly note that, while autonomous spacecraft navigation was the origi-
nal motivation for this work, crater pattern recognition is equally useful for the
registration of scientific images [138].

In this manuscript, we provide a comprehensive treatment of lunar crater pattern
recognition in digital images formed by a conventional camera (i.e., under perspec-
tive projection). We begin by outlining the philosophical framework for such a system
(Section 2) and then review important background material (Section 3). This is fol-
lowed by the detailed mathematical development in Sections 4–9. Numerical results
and examples are shown in Section 10. This work contains a number of key results,
which are summarized here:

1. Almost all lunar impact craters are elliptical, and many are nearly circu-
lar (Section 3.1). Rather than being a heuristic design choice for easy crater
identification, we discuss why craters are necessarily elliptical in shape from
a perspective of planetary science and impact mechanics. Recent advance-
ments in our knowledge of the lunar crater population suggests that a cir-
cular crater assumption (common amongst crater identification algorithms) is
not well-supported by the data for small craters (diameter less than about
30 km).

2. Invariant theory is the proper mathematical framework for recognizing a pat-
tern of crater rims in an image (Section 5). Elliptical craters on the lunar surface
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project to elliptical features in an image (Section 4). For some patterns of
craters, there exist algebraic quantities that remain unchanged (i.e., invariant)
regardless of the camera pose and that may be computed from just the projected
crater rims in a single image. Such quantities we call projective invariants.
Invariant theory provides the means by which we may determine the existence
(or not) of these projective invariants.

3. There are no projective invariants for arbitrarily placed conics (e.g., elliptical
crater rims) on the surface of an arbitrarily shaped body. We provide the first
known proof of this fact (Section 5.4.3). This result is significant, as it produces
a theoretical obstacle for solving the lost-in-space crater identification problem
about very irregular bodies, such as some asteroids and comets. Fortunately, the
Moon is not an arbitrarily shaped body.

4. Projective invariants exist for arbitrarily placed conics (e.g., elliptical crater
rims) lying on a nondegenerate quadric surface (e.g., sphere, ellipsoid), which is
an excellent approximation for the shape of the Moon. A different set of invari-
ants exists for conics lying on a common plane. The existence of invariants for
conics on a nondegenerate quadric surface is a novel result (Section 5.5), while
invariants for conics on a plane is a known result (Section 5.2). Since the Moon
is nearly spherical on the regional/global level and nearly planar on the local
level, projective invariants generally exist for craters lying on the surface of the
Moon. In both cases (global and local), we show how to efficiently compute
these invariants from only the projected conics (i.e., the contour of the crater
rim) that appear in a digital image (Section 6).

5. There are no algebraically independent invariants for conics (e.g., elliptical
crater rims) on a nondegenerate quadric surface or on a plane beyond the ones
developed in this work. All other invariants a researcher may conceive for one
of these two cases may be a written as an algebraic function of the invariants
discussed herein. Thus, our invariants describe all the independent information
about a crater rim pattern that is pose invariant and useful in constructing a
descriptor that may be indexed. We provide the first known proof of this fact
for the case of conics on a nondegenerate quadric surface (Section 6.1.3). Given
these findings, we suggest future investigation of invariants for patterns of lunar
crater rims be focused on ease of computation or numerical stability rather than
attempting to extract additional independent information from the crater rim
contours (since there is no additional independent information to be had that
remains unchanged with camera viewpoint).

6. The projective invariants for a triad of lunar craters may be used to form a
feature descriptor that is insensitive to camera viewpoint (Section 7). These
descriptors may be computed for known crater patterns and stored in a search-
able catalog (i.e., an index). Matches to an observed crater pattern in any image
are found by simply finding the nearest neighbor for its descriptor in the index.
In cases where it is desirable for the matching to be permutation sensitive, the
descriptor is nothing more than the projective invariants concatenated into a
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vector. Alternatively, in cases where we wish the matching to be insensitive to
crater ordering, we apply invariant theory a second time to construct projec-
tive and permutation (p2) invariants. This is a novel result for crater pattern
descriptors.

7. Lunar crater identification is a multi-scale pattern recognition problem. Local,
regional, and global crater patterns are built from individual craters of differ-
ent (increasing) diameters and occur over different (increasing) extent on the
lunar surface. For example, a 1 km crater may contribute to a local crater pat-
tern but not a global crater pattern, while a 100 km crater may contribute to a
global crater pattern but not a local crater pattern. To address this challenge, we
present the first known use of Hierarchical Equal Area isoLatitude Pixelization
(HEALPix) to construct a hierarchy of crater catalogs (Section 8).

8. A substantial amount of navigation information is contained within the shapes
of projected crater rims in an image. Many existing crater identification algo-
rithms, however, compute camera pose using only the center coordinates of the
craters—thus ignoring a great deal of actionable information. We discuss how
to compute the camera position using the contours of projected image conics,
rather than just the conic center coordinates. Our solution is non-iterative and
finds the camera position in the least squares sense when observing d ≥ 2
craters (Section 9.1).

9. Crater match hypotheses are verified by comparing the observed crater rims
to what is expected were the hypothesized match true. Most existing crater
identification algorithms perform this verification by comparing only the coor-
dinates of crater centers, which generally requires ≥ 5 craters locations to
agree. Instead, we develop a novel distance metric as a measure of how dis-
similar two ellipse contours are from one another (Section 9.2) and use this to
compare the observed and expected crater rims. Our metrics satisfy the three
classical axioms for a metric (minimality, symmetry, triangle inequality) along
with a fourth requirement of similarity invariance. Using the entire crater rim
permits pattern verification with just the three craters used to perform the index
match and does not require additional craters for verification. Thus, as com-
pared to past methods, the new distance metric permits crater identification over
more sparsely cratered regions of the Moon.

10. There is no single crater identification algorithm that is always best. The correct
solution depends on orbital regime (or descent trajectory), camera specifica-
tions, on-board computational and memory resources, operational cadence, and
other mission-specific parameters. There are critical crater identification design
decisions to be made for the crater catalog (raw source of data), index scale
(local, regional, global, or a combination), index organization, and invariant
descriptor type (projective invariants or p2 invariants). Therefore, rather than
present a single crater identification algorithm, we suggest a framework solving
this problem and provide the reader with tools for each step. Once understood,
the elements in this manuscript may be used to identify craters for a wide
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diversity of mission types. A few illustrative examples are provided to enhance
understanding of how this might work.

Finally, we note that this work relies on mathematics and techniques that may
be obscure to the average astrodynamicist and spacecraft navigator. Therefore, we
adopt a rather explanatory approach to facilitate understanding, dispel common
misconceptions, and encourage adoption of the techniques herein.

2 A Framework for Lost-in-Space Terrain Relative Navigation (TRN)

The principal difficulty with recognizing 3D objects from their projection in a digital
image is that the appearance of these objects changes with camera viewpoint and illu-
mination geometry. The recognition of landmarks on the lunar surface inherits this
generic computer vision difficulty. In many cases (including lunar landmark identi-
fication), we may circumvent this problem entirely by choosing to represent objects
with a descriptor that remains the same (is invariant) regardless of camera viewpoint.
Such an object recognition philosophy was influentially advocated for in [97] and
[147], and we adopt this philosophy here.

There are a variety of object attributes that may remain unchanged with camera
viewpoint and illumination geometry, including color, texture, and geometric struc-
ture. Finding these invariant attributes, however, requires a great deal of care. Of
note, we know that no such invariant exists for an arbitrary patch of terrain with con-
stant albedo and with an approximately Lambertian reflectance [17]. This suggests
that terrain patches (or maplets)—as is often used in correlation-based TRN [3, 44,
64, 105]—may not be well-suited for lost-in-space TRN, though this is an important
topic of future work. We also observe that popular image feature descriptors—such
as SIFT [83], SURF [7], BRIEF [78], ORB [124], and others—do not describe the
type of invariance required for lost-in-space TRN. They are, by construction, not the
appropriate tool for the problem considered in this manuscript. There are two primary
reasons for this. First, most of these descriptors are only formally invariant for a sim-
ilarity transformation (translation, rotation, scaling), though many have been shown
to be robust for a modest amount of affine shear. While there do exist feature descrip-
tors that are formally affine invariant [92], it was convincingly argued by Lowe
[83] that such invariance is often undesirable within the context of feature descrip-
tors. Regardless, none of these descriptors are especially robust to extreme projective
transformations—making them more appropriate for matching features between two
similar images than for matching a single arbitrary image to a prebuilt database of
features on a 3D object. The second (and more significant) problem with classical
feature descriptors for lost-in-space TRN is that none of them are illumination geom-
etry invariant, as discussed at length in [27]. In brief, all of these feature descriptors
work by finding and describing regions of unique 2D patterns in an image. For TRN
above an airless body (e.g., Moon, asteroid), the 2D pattern observed in an image is
formed by the way that light is reflected off the terrain and towards the camera. When
the lighting geometry changes, the 2D pattern in the image changes—thus the feature
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descriptor for the same surface patch will change. Hence, the feature descriptors are
not illumination invariant.

An alternative to landmark patches and feature descriptors is to look for explicit
geometric features. Crater rims are one such geometric feature that can be easily
recognized and consistently localized, even when observed from different camera
viewpoints and under different lighting conditions. We find the geometry describing
the pattern of multiple crater rims to be one of the most accessible attributes from
which viewpoint invariant information may be constructed.

For any given object geometry, such as a pattern of crater rims, there may be a
variety of viewpoint-invariant properties—but not all of these necessarily provide
equal perceptual salience [63]. Thus, at a minimum, we seek non-constant invari-
ants1 that can effectively differentiate between many different crater rim patterns.
Such non-trivial invariants do not always exist for craters lying on the surface of arbi-
trary 3D celestial bodies, though they do exist for a body such as the Moon. Even
when invariants do exist, finding a way to compute them is not always straightfor-
ward. However, as we show in this manuscript, the additional effort to develop these
invariants produces powerful pattern recognition capabilities.

The identification of perceptually salient invariants under the action of perspec-
tive projection (e.g., a digital image of the Moon collected with a conventional
camera) allows us to quickly distinguish between two different objects (e.g., two
different crater patterns) possessing two different invariant descriptors. Therefore, if
we compute the invariants for a particular lunar crater pattern, these invariants may
be concatenated into a descriptor for that pattern and stored in a catalog (or index)
for future comparison. We repeat this procedure for each known crater pattern pre-
flight and produce a very large index of patterns and their corresponding descriptors.
Then, when an image is acquired in-flight, the invariants may be computed for an
observed crater pattern and concatenated into the same type of pattern descriptor that
we stored within the index. Therefore, the index may be queried for known patterns
with descriptor values similar to that of the observed crater pattern. Efficient data
structures allow such queries to be performed very fast, usually in O(log n) time.

Matches from the index may be used to construct crater match hypotheses, which
must be verified before acceptance. The primary means for verification is to use a
hypothesized crater correspondence to compute the camera’s location. This hypothe-
sized camera location is used to reproject expected crater rims into the image, which
are compared to the observed crater rims. If the reprojected pattern matches the obser-
vations, the match hypothesis is accepted. If not, the match hypothesis is rejected,
and we attempt a different hypothesis.

This framework is summarized in Fig. 1. The remainder of this manuscript is
dedicated to providing the details for each step of this process.

1By non-constant or non-trivial invariants we mean functions that have the same value for different view-
points of the same object, but whose value can change if the object being viewed changes.
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Fig. 1 The crater identification framework has two major components: index construction and pattern
recognition. The index construction step (left) is often time-intensive since we must loop through all
possible triads and then store them in an efficient data structure. The crater patter recognition step (right)
is fast and is performed for each image
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3 Background

3.1 Observations on Lunar Crater Morphology and Size-Frequency Distribution

Lunar crater identification algorithms often begin with the assumption that the crater
rims are either circular or elliptical in shape. It is also generally assumed that
craters are well distributed about the Moon and that the crater catalog is static (new
craters are not being added or removed). We find, however, that many recent crater
identification algorithms are built on assumptions not supported by a modern under-
standing of the lunar crater population—and, therefore, are not likely to perform
well across the full diversity of orbital regimes. A thorough understanding of lunar
crater morphology and size-frequency distributions must precede the development of
a computational algorithm to recognize patterns of these features.

3.1.1 Crater Catalogs

To recognize crater patterns in images of the lunar surface, we must first know where
the craters are located and how they are shaped. Such data is contained in lunar crater
catalogs. In most cases, however, these catalogs were built for planetary science pur-
poses and not for image registration purposes—with the specific scientific question
motivating the catalog construction often influencing the contents of the catalog.
This must be considered before repurposing a catalog for spacecraft navigation, since
not all lunar crater catalogs are appropriate for building an index for crater pattern
identification.

There are a variety of lunar crater catalogs available; e.g., [52, 112, 119], and oth-
ers [126, 140]. These catalogs were created with differing scientific objectives and
from different raw data sets—thus, there should be no expectation of a one-to-one
correspondence between their entries. For example, the minimum crater diameter
is different for each catalog (and some catalogs even focus on very specific size
ranges). As another example, some catalogs include all crater-like objects (e.g.,
[119]), while others only include craters the authors are confident originated from an
impact event (e.g., [112]). Moreover, some catalogs attempt to only count the craters
produced by direct impacts, thus ignoring those craters thought to be produced by
secondary impacts (i.e., ejecta from the primary impact). This highlights the impor-
tance of selecting the crater catalog that best matches a particular mission’s crater
identification needs.

Crater catalogs are a useful tool for studying the statistical properties of the entire
lunar crater population. To obtain global and comprehensive coverage, we usually
exchange the detailed understanding of individual craters for a general understand-
ing of all craters. Clearly, a detailed study of any single crater would yield a more
sophisticated understanding of that crater—and likely produce crater information
(e.g., size, shape, depth) that differs slightly from its corresponding entry in a global
crater catalog.

The most comprehensive crater catalog to date is that of [119], containing about
1.3 million lunar impact craters having a diameter larger than about 1–2 km. This is
the database we choose to use in this work.
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3.1.2 The Elliptical Crater Assumption

The natural shape of an impact crater is an ellipse. Almost all lunar craters are nearly
elliptical, and many craters are nearly circular [14]. The same is true for crater popu-
lations on other large celestial bodies [54]. Clearly, no crater rim is a perfect ellipse
or perfect circle and this is only an approximation of the general shape.

The are a variety of factors that determine the size and shape of an impact crater.
With regards to the shape of lunar crater rims, the most important factors are the
impactor velocity, impactor size, and lunar surface properties. Lower impact angles,
φ (see Fig. 2), tend to produce craters of higher ellipticity—where we define ellip-
ticity, ε = a/b ≥ 1, as the ratio of crater rim semi-major to semi-minor axis. The
sensitivity of the crater ellipticity to this impact angle is a function of the crater-
ing efficiency (the ratio of crater diameter to impactor diameter) [14, 39], which acts
as a model surrogate for impactor size and lunar surface properties. An empirical
fit to hydrocode simulations and laboratory experiments shows excellent agreement
between the impact angle at which ε = 1.1 occurs (φε=1.1) and a simple power law
relation [39],

φε=1.1 = (90 deg)

(
D90

L

)−0.82

(1)

where D90 is the crater diameter for a vertical impact and L is the impactor diameter
(i.e., D90/L is the cratering efficiency for a vertical impact). Thus, an impact with
φ < φε=1.1 will produce a crater with ε > 1.1. The cutoff angle φε=1.1 is generally
between 3–5 deg (for sand, D90/L ∼ 60) and 30 deg (for brittle rock, D90/L ∼ 4)
[29, 39, 91].

Given the rather oblique impact angle required for an elliptical crater, it follows
that a large percentage of lunar craters should be nearly circular. For an airless body
such as the Moon, the cumulative distribution function (CDF) for the impact angle
when the impactors are assumed to arrive from random directions is [130]

p(φ ≤ φ0) = sin2 φ0 (2)

Fig. 2 Geometry (side view) of impact crater creation, with the impact angle being defined as the angle
above the local horizontal
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This model suggests that about 7.6% of the crater population should have an impact
angle less than 5 deg and that about 25% of the crater population should have an
impact angle less than 30 deg. The database of [119], however, found a higher per-
centage of elliptical craters than might otherwise be expected and proposed a few
hypotheses for this observation. Of particular note is that Robbins’s database includes
both primary and secondary impact craters, whereas many ellipticity studies (e.g.,
[14]) only consider primary craters.

Regardless of the underlying physical cause, the newly available global distribu-
tion of crater ellipticity from [119] makes clear that a circular crater assumption is
not valid at the local level (i.e., when viewing craters of diameter smaller than about
30 km). This finding is significant, as many recent crater identification algorithms
assume a circular crater model—a choice that is not well supported by the data. To
see this, consider the ellipticity distribution as a function of crater size as shown
in Fig. 3. We immediately see that over half of the entire crater population has an
ellipticity greater than 1.1 (the threshold planetary scientists usually use to define an
“elliptical” crater [14, 39]). Many of these craters, however, are not morphologically
well preserved—and, therefore, are not good candidates for crater-based navigation
since they will not produce good ellipse fits. If we restrict ourselves to well-defined
craters whose catalog shape is supported by over 90% of its circumference, we see
a substantially larger percentage of the craters are nearly circular, especially when
considering craters larger than 30 km.

Fig. 3 Lunar craters with well-defined rims tend to be less elliptical than the general population of craters.
Plots show the fraction of craters above a specified ellipticity for every catalog crater (top) and for only
those with well-defined crater rims (bottom). A visualization of crater ellipticity is shown above the plots
for intuition and context. Results are based on post-processing of catalog data from [119]

1066 The Journal of the Astronautical Sciences  (2021) 68:1056–1144

1 3



Topography or layered strength differences can create other irregular crater shapes
[89], with a few examples shown in Fig. 4. On the Moon, simple craters (�10–20
km in diameter) often have bowl-shaped morphologies, with small flat floors and
few internal topographic features. Some may have deposits on the floor that originate
from mass wasting or ponding of impact melt. The rims of simple craters are gener-
ally uplifted (unless significant degradation has occurred, as in the case of old simple
craters), and the crater is surrounded by an ejecta blanket. More energetic impacts
create larger, more complex craters. Complex craters (�10–20 km) have more varied
morphologies, including central peaks, terraced walls, and flattened floors. Central
peaks are formed by rebounding of material from deeply buried rocks, making these
features especially interesting for studying materials excavated from lower in the
crust. Larger complex craters can often have more than one central peak structure.
Surrounding rocks in the wall of complex craters can also collapse, forming terrace-
like structures. As impact features increase in size, they also increase in complexity.
Craters larger than 300 km are usually classified as basins.

3.1.3 Lunar Crater Size-Frequency Distribution

Analyzing crater populations plays a major role in establishing planetary chronolo-
gies and in dating geologic units. There is general consensus that the lunar cratering
projectile flux was relatively constant within the last 3 Gyr [102, 133], with the period
before 3 Gyr experiencing variable impact rates as a result of the hypothesized late
heavy bombardment.

Cumulative crater size-frequency distributions (SFDs), which describe the num-
ber of craters greater than a given diameter per measured area, are the usual data
product used to estimate the age of planetary surfaces. Crater SFDs are conven-
tionally determined by binning measured craters based on their diameters [46, 55],
though modern practitioners are transitioning to more formal statistical approaches
(e.g., using empirical density functions) [120]. These SFDs are often used to produce
production functions that describe the rate at which new craters occur.

The most commonly used production function for estimating lunar surface ages is
the Neukum Production Function (NPF) [101, 102]. The NPF models the formation

Fig. 4 Craters of different sizes and ages exhibit a variety of morphologies. (A) Lichtenburg B (33.3 N,
61.5 W), a 5 km simple bowl-shaped crater with a raised rim. (B) Aristarchus (23.7 N, 47.4 W), a 40 km
complex crater with terraced walls and a single central peak. (C) Copernicus (9.62 N, 20.08 W), a 93 km
complex crater with double central peaks, terraced walls, and a flat floor. (D) Riccius W (38.9 S, 25. 2 E),
a 19 km degraded crater with an infilled cavity and much of the rim no longer clearly visible
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rate of craters between 10 m and 300 km, and is generally used to estimate ages for
geologic units on the Moon [102]. The NPF is shown in Fig. 5 and is given by

log10(N) =
m∑

k=0

ak

[
log10(D)

]k (3)

where D is the crater diameter, N is the number of craters of size D or smaller per
unit area per unit time, and the coefficients ak (for m = 11) are given in [102]. The
NPF suggest that that we should expect the production of new craters on the lunar
surface to occur at a rate of 1.7×10−5 new craters larger than 4 km per km2/Gyr. For
the Moon, this results in approximately 635 new craters per Gy (or about 1.7 × 10−9

craters/day). Assuming impacts follow a Poisson distribution, we may straightfor-
wardly compute the probability of an impact creating a crater larger than 4 km during
a specified period of time. If a crater catalog must be valid for a period of days to
a few years, the probability of a new crater appearing is essentially zero. Thus, it is
quite reasonable to assume a static crater catalog.

We note that recent work analyzing new impact craters as detected by the Lunar
Reconnaissance Orbiter (LRO) Camera [133] found that the current cratering rate
may potentially be higher than what the NPF predicts. Regardless, the expected dis-
crepancies are small within the present context and the static crater catalog assump-
tion remains valid.

3.2 Crater Detection

Successful crater detection is a prerequisite for crater identification. While not the
focus of the present work, a brief review of crater detection algorithms (CDAs) is
appropriate.

Fig. 5 The Neukum Production Function (NPF) describes the cumulative number of new lunar craters per
km per Gyr below a specified diameter. The red line shows the NPF evaluated at a diameter of 4 km
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There have been a number of recent surveys of CDAs for both planetary sci-
ence [33, 125] and spacecraft navigation [142] applications. We observe here that
the crater detection requirements for planetary science and navigation are often quite
different—meaning algorithms developed for one application are not necessarily
transferable to another application. There are two primary differences. First, from a
scientific standpoint, the CDA objective is often to find all of the craters. For naviga-
tion, however, the objective is not to find every crater, but only enough to navigate.
Any crater found that is not in the database becomes clutter that must be rejected.
Thus, an algorithm that returns every crater is not necessarily better for navigation,
and we are more interested in algorithms that preferentially return only well-modeled
craters that exist in our on-board catalog. The second primary difference between
scientific and navigation CDAs is suitability for real-time use. CDAs for autonomous
navigation must be fast enough to run in real-time on a space-qualified computing
platform and robust enough to not require human supervision. No such requirements
are generally placed on CDAs for scientific analyses.

Of special note is the tremendous progress made in CDAs with machine learning
over the last five years. Some notable algorithms include: DeepMoon2 [131], Python
crater detection algorithm (PyCDA)3 [69], LunaNet [37], CraterIDNet [139], and
others [9, 33, 40].

With well over 100 different algorithms contained in the CDA surveys [33, 125,
142], we find no need to discuss the topic further here. The interested reader is
directed to these surveys and the references therein.

3.3 Crater Identification

Lost-in-space crater identification from a single image is a pattern recognition prob-
lem. When challenged with an image containing a set of observed craters, the task is
to find the corresponding craters from within a large catalog of known craters.

This problem is not new, and numerous attempts have been made in the past to
recognize crater patterns. However, the lack of an existing invariant for non-coplanar
ellipses has forced past work to make numerous simplifying assumptions or employ
ad hoc recognition schemes. These restrictive assumptions are relaxed by the devel-
opments introduced in this work. We now review some of the most notable prior
work in crater identification and discuss their drawbacks using insights from invariant
theory. As the reader will see, miscounting of independent invariants is a perva-
sive problem in the crater identification literature—leading to descriptors that are
incomplete, redundant (i.e., not all elements are independent), or both. This recurring
problem is one of the principal motivations of the present work.

Hanak [49, 50] uses an adaptation of star identification algorithms [95, 127] to
recognize crater triads—an interpretation of the crater identification problem that has
become influential within the spacecraft navigation community. Hanak chooses to

2https://github.com/silburt/DeepMoon
3https://github.com/AlliedToasters/PyCDA
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index the crater pattern using the triangle’s interior angles, which is not an invariant
under general perspective projection. Therefore, the approach of [49, 50] opera-
tionally restricts usability to a nadir pointing camera with a modest field-of-view,
which restricts the crater pattern to a similarity transformation where inter-crater
angles remain invariant. If the camera is not nadir pointing, or if the spacecraft is far
away from the Moon and craters are not nearly coplanar, the descriptor is no longer
pose invariant and matching performance may be poor. Once potential matches are
made, the authors of [49] check these hypotheses against four additional metrics
(three ratios of crater diameters to inter-crater distances, and a ±1 flag indicating
if the triangle is clockwise or counterclockwise going from shortest to longest leg),
which are also not projective invariants. We observe, therefore, that the authors of
[49, 50] develop a six element descriptor, with none of the elements being a projective
invariant. We contrast this to the seven known invariants for three coplanar conics.
It is possible, therefore, to build a seven-element descriptor (see Section 6.2.2) that
holds more descriptive power than [49] and that is also a projective invariant.

Yu, et al., assume coplanar craters under affine transformation [145], and develop
an invariant descriptor based on the ratio of crater areas. The ratio of areas of
two closed coplanar curves as invariant for affine transformations is discussed in
[41]. Identification using only area ratios, however, neglects the spatial relationships
between the craters and significantly reduces the descriptiveness of these invariants.
Like the work of Hanak [49], the methods from [145] are also limited to nearly nadir
pointing images of nearly coplanar craters.

Cheng, et al., develop a crater identification scheme by matching pairs of copla-
nar craters [18, 20] using invariants from [41] and [115]. A pair of coplanar conics
possess two unique invariants, which may be computed preflight and indexed into a
catalog for in-flight matching. The descriptive power of only two conics, however, is
low—so multiple pairs must be compared, which is straightforward to accomplish.
Additionally, the constraint of using coplanar conics limits the flight regimes where
this technique works well. Despite these minor drawbacks, we consider the work
of [18, 20] to be the most theoretically informed lost-in-space crater identification
approach developed to date.

Park, et al., consider a pattern of three coplanar craters [110] by looking at inva-
riants of six coplanar points, where the six points are formed by the intersection
of the triangle connecting the crater centers with the crater conics. These six copla-
nar points are split into six possible groupings of five points, from which the two
unique invariants for each set of points may be computed using results from [41].
Then, for each set of points, these two invariants are made insensitive to point order-
ing using the projective and permutation invariants (also called p2 invariants) from
[76]. The pair of invariants for five coplanar points from [41] produce five p2 invari-
ants [76]. The authors of [110] concatenate the five p2 invariants for each of the six
sets of points to create a 30-element descriptor (5×6 = 30) for the crater triad. How-
ever, as discussed in [76], only two of the five p2 invariants for a set of five coplanar
points are independent (which should be expected, since making the two invariants
from [41] insensitive to point ordering can not add new invariants). Therefore, the six
sets of five points are really described by vector of 6 × 2 = 12 invariants, such that
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the 30-element descriptor from [110] has 18 redundant elements that do not enhance
discriminative power. Moreover, the six sets of five points are not constructed from
unique points (they are the six possible five-point combinations of the same six
points), thus the remaining 12 invariants are not all independent. We observe that six
coplanar image points possess only four independent projective invariants. We also
observe that d ≥ 2 coplanar conics possess only 5d−8 independent projective invari-
ants (seven invariants for a triad of craters), as discussed in Section 5.2. Consequently,
the 30-element descriptor of [110] has only four independent elements, 26 redundant
(dependent) elements, and is missing three independent invariants. We note here that
the seven invariants for three coplanar craters may be computed directly from the
observed image conics as discussed in Section 6.2, without the need to compute sets
of points. Likewise, invariants for clusters of four or more coplanar craters may also
be computed directly [53]. The practical mechanics of computing such invariants are
discussed in Section 6.2.2. If one wishes to build a permutation invariant descriptor
(e.g., with p2 invariants), we discuss how to do this for triads of craters in Section 7.

Maass, et al., propose an assortment of crater identification techniques [86],
though we only discuss their lost-in-space technique here. They assume circular
craters, thereby allowing explicit estimation of the crater normal in the camera frame
(there are two possibilities [22, 129]). Given a set of three craters and their nor-
mals, the authors of [86] consider the 23 = 8 possible configurations and choose
the one where the normals are most similar (which presupposes a nearly planar con-
figuration). More craters can be added to the pattern by iteratively solving a binary
global optimization problem, with the cost function being the curvature energy of
a cubic spline through a Delaunay triangulation of the crater centers. This resolves
the 3D crater configuration (or reconstruction) to an unknown scale. Thus, Maass,
et al., define a pattern descriptor using a pair of independent interior angles of a
3D crater triad, which we observe is a projective invariant since it is a reconstruc-
tion of the 3D geometry (and not the triangle in the image). Maass, et al., augment
this check with the two independent ratios of crater radii. Pattern matches are veri-
fied by comparing the reprojected centers of additional craters. This usually requires
two additional craters, thus requiring an image to possess five craters to yield a
successful match. The method of [86] just described has three major drawbacks.
First, we know from Section 3.1.2 that the circular crater assumption is often not
valid, with 25%–50% of small craters having an ellipticity ε > 1.1. This effects
the ability to accurately estimate the surface normal direction (e.g., a nadir-pointing
image of an elliptical crater with ε = 1.1 would have a normal direction error
over 20 deg if it was incorrectly assumed circular). Second, the two parameter pat-
tern descriptor (or four parameters if you count the radii ratios, though these do
not appear to be explicitly used in the search) are not maximally descriptive—we
know there to be seven invariant parameters for a triad of nearly coplanar craters
(see Sections 5.2 and 6.2.2). Thus, while the descriptor is indeed pose invariant (if
the craters are circular), there are at least three independent pieces of information
that remain for describing the crater pattern. Third, by verifying matches using only
crater centers, more craters are required. Verifying using the crater rim reprojection
(see Section 9.2) reduces the number of craters required.
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There are a variety of other crater matching schemes [31, 68, 84], all of which
make assumptions similar to the above methods.

This work is most similar to that of [18, 20], though we relax the requirement
that craters be coplanar—thus enabling a substantial expansion of the orbital regimes
where crater matching may be performed. We also allow for the simultaneous
consideration of more craters by using triads instead of pairs.

4 Geometry of the Projection of a Single Crater

4.1 Mathematical Representation of a Crater

Since impact craters are known to be elliptical in shape, many lunar crater databases
store the ellipse parameters for the best-fit ellipse to the rim of each cataloged crater.
The most common database parameterization is the (1) latitude/longitude of the crater
center {ϕ, λ}, (2) lengths of crater ellipse semimajor and semiminor axes {a, b}, and
the orientation of the crater ellipse ψ (often measured counterclockwise from East).
This is the parameterization used in the Robbins database [119].

In this work, we assume that a crater is a planar feature defined by the 2D elliptical
curve that best describes the crater’s rim. Circular craters are a special case (a = b)
that is naturally handled without special treatment.

Let ξM be a three-dimensional (3D) point in the selenographic (i.e., Moon-
centered, Moon-fixed) frame,

ξM =
⎡
⎣ xM

yM

zM

⎤
⎦ (4)

which may be represented in homogeneous coordinates as

ξ̄M =

⎡
⎢⎢⎣

xM

yM

zM

1

⎤
⎥⎥⎦ (5)

A crater is a planar feature, so let the plane Pi containing crater i be described by the
4 × 1 vector π i , such that

Pi = {ξ̄ ∈ P
3 | πT

i ξ̄ = 0} (6)

Here, Pn denotes projective space, which is discussed in greater detail in Ref. [51]
and Ref. [43].
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4.1.1 Two-dimensional (2D) Crater Description

Within the plane Pi , define a 2D coordinate system with origin at the ellipse center
and aligned with the ellipse principal axes (see Fig. 6). In this case, we arrive at the
canonical form of an ellipse, where the point [x′, y′] lies on the ellipse if

x′2

a2
+ y′2

b2
= 1 (7)

where a is the ellipse semi-major axis and b is the ellipse semi-minor axis. Now,
define another 2D coordinate system within Pi with a different origin and different
coordinate axis orientation (see Fig. 6). Let the center of the ellipse be located at
[xc, yc] and the ellipse principal axes be rotated by an angle ψ . A point [x, y] in this
coordinate system is related to a point [x ′, y′] by a Euclidian transformation,[

x′
y′
]

=
[

cos ψ sin ψ

− sin ψ cos ψ

] [
x − xc

y − yc

]
=
[

(x − xc) cos ψ + (y − yc) sin ψ

−(x − xc) sin ψ + (y − yc) cos ψ

]

(8)

Substituting this result into Eq. 7 yields the implicit equation

Ax2 + Bxy + Cy2 + Dx + Fy + G = 0 (9)

where

A = a2 sin2 ψ + b2 cos2 ψ (10)

B = 2(b2 − a2) cos ψ sin ψ (11)

C = a2 cos2 ψ + b2 sin2 ψ (12)

D = −2Axc − Byc (13)

F = −Bxc − 2Cyc (14)

G = Ax2
c + Bxcyc + Cy2

c − a2b2 (15)

Fig. 6 Visualization of ellipse parameterization in Pi
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Observe that Eq. 9 is the generic equation for a conic, which happens to be an ellipse
when B2 −4AC < 0. A simple calculation with Eqs. 10–12 shows that B2 −4AC =
−4a2b2, which will always satisfy the ellipse inequality constraint when a ≥ b > 0.
The reverse mapping (implicit coefficients to explicit parameters) is straightforward
and left to the reader (though the expression may be found in [25]).

The implicit equation from Eq. 9 may be written as a quadratic form using homo-
geneous coordinates. Therefore, letting a 2D point in the crater plane Pi be given
by

x =
[

x

y

]
(16)

which may be written in homogeneous coordinates as

x̄ =
⎡
⎣ x

y

1

⎤
⎦ (17)

we observe that Eq. 9 may be rewritten as

x̄T C x̄ = 0 (18)

where

C ∝
⎡
⎣ A B/2 D/2

B/2 C F/2
D/2 F/2 G

⎤
⎦ (19)

The expression in Eq. 18 describes a conic locus, which is the locus of 2D points
forming the path of the conic (see Fig. 7). The matrix C describing a conic is a 3 × 3,
real-valued, symmetric matrix of ambiguous scale. The ambiguous scale means that
C has only 5 degrees-of-freedom (which is also obvious from Eq. 9) and that C and
kC (with k being a real-valued, non-zero scalar) describe the same conic. If C is full
rank (as it is with an ellipse), we have a proper conic—otherwise it is degenerate

Fig. 7 Visualization of simple conic locus (black) and lines belonging to the conic envelope (red)
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(either a pair of lines or a double line). Furthermore, if the conic is an ellipse, C is
indefinite—always having two eigenvalues of one sign and a third eigenvalue of the
opposite sign, with none of the eigenvalues being zero (since it is a proper conic).

Since C is full rank for an ellipse, det(C) �= 0 and

C−1 = det(C)−1C∗ ∝ C∗ (20)

where C∗ is the adjugate matrix of C.
In projective geometry, points are dual to lines [51, 128]. A 2D point written in

homogeneous coordinates (x̄) lies on the line � if it satisfies the constraint �T x̄ = 0.
Clearly, x̄ and � can be exchanged in this relation—hence the point–line duality. To
apply this duality property to conics, first observe that the line � ∝ Cx̄ is tangent to
the conic C if x̄ is a point on the conic [51]. For a proper conic, one may therefore
compute x̄ ∝ C−1�. Substitution into Eq. 18 yields

x̄T C x̄ =
(
C−1�

)T

C
(
C−1�

)
= �T C−T CC−1� = 0 (21)

and, since C is symmetric and C−1 ∝ C∗,

�T C∗ � = 0 (22)

where � is a line tangent to the conic. The utility of using adjugate matrices instead
of inverses will become readily apparent as we proceed.

The expression in Eq. 22 describes a conic envelope, which is the family of tangent
lines that encapsulate the ellipse (see Fig. 7).

4.1.2 Three-dimensional (3D) Crater Description

The elliptical crater rim is a 2D feature in 3D space. Thus, as we will show, the crater
catalog data may be used to construct both the crater’s plane and the disk quadric
describing the 3D crater. The disk quadric is the natural and mathematically rigorous
way to represent a 3D conic feature.

Consider catalog crater i with a geometric center at lunar latitude ϕi and longitude
λi . The 3D selenographic position of the crater center is

p(c)
Mi

= ρi

⎡
⎣ cos ϕi cos λi

cos ϕi sin λi

sin ϕi

⎤
⎦ (23)

where ρi is the distance of the plane Pi from the center of the Moon. The crater’s
center point is assumed to lie in the crater plane, πT

i p̄
(c)
Mi

= 0.
The Moon is very nearly a sphere. Therefore, to an excellent approximation, the

crater normal is parallel to the selenographic crater center location p(c)
Mi

. If the celestial
body were an oblate spheriod, the local “up” direction may be computed through
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an additional simple calculation [12, 15]. Regardless, assuming a spherical Moon,
define a local East-North-Up (ENU) coordinate system, such that

ui = p(c)
Mi

‖p(c)
Mi

‖
(24)

ei = k × ui

‖k × ui‖ (25)

ni = ui × ei

‖ui × ei‖ (26)

where kT = [0 0 1] describes the selenographic description of the lunar pole. With
the coordinate axes defined, construct the attitude transformation matrix (passive
interpretation of a rotation [146]),

TEi

M = [
ei ni ui

]
(27)

that transforms a vector expressed in the ENU frame of crater i (defined as Ei) to the
same vector expressed in the selenograhic frame M .

It is acknowledged that the ENU frame is poorly defined at the poles. In this
case, we may replace (25) and (26) with a different convention. Any consistent and
well-defined convention for defining the basis vectors of the local horizontal will
work.

Since ui is normal to the plane and ρi is the perpendicular distance to the center
of the Moon, the vector π i describing the plane Pi may be computed as

πT
i = [

uT
i −ρi

]
(28)

Now, consider a 3D point ξEi
lying on the rim of crater i as expressed in

the crater’s ENU frame Ei . This 3D point may be transformed into selenographic
coordinates,

ξM = p(c)
Mi

+ TEi

M ξEi
(29)

which may be compactly written in homogeneous coordinates

ξ̄M =
[

TEi

M p(c)
Mi

01×3 1

]
ξ̄Ei

(30)

Since the point ξ̄Ei
lies in the plane Pi , it is evident that

ξ̄Ei
=

⎡
⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x

y

0
1

⎤
⎥⎥⎦ (31)
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Thus, defining the columns of TEi

M according to

TEi

M = [
t1i

t2i
t3i

]
(32)

we arrive at a relation between the 2D ellipse point x̄Ei
in the crater plane [see Eq. 17]

and its corresponding 3D point in the selenographic frame

ξ̄M =
[
HMi

kT

]
x̄Ei

(33)

where kT = [0 0 1] and HMi
is the 3 × 3 matrix

HMi
=
[
t1i

t2i
p(c)
Mi

]
=
[
TEi

M S p(c)
Mi

]
(34)

and where S is the 3 × 2 matrix

S =
[
I2×2
01×2

]
(35)

Consider a quadratic surface in P
3 (e.g., a sphere, an ellipsoid). Such surfaces are

generally called quadrics, with a 3D point ξ̄ lying on the surface if

ξ̄
T
Qξ̄ = 0 (36)

where Q is a 4 × 4 symmetric matrix describing the surface. This is the 3D analog to
the 2D expression in Eq. 18.

The 3D surface defined by Eq. 36 is called a quadric locus. The 3D conic locus (a
curve) cannot be represented by a quadric alone. Instead the conic defines a proper
quadric cone (where Q is a 4 × 4 matrix of rank 3) and the 3D conic is formed by the
intersection this quadric cone with the plane Pi . Therefore, define the Moon-centered
quadric cone (i.e., a cone with vertex at the center of the Moon) as

Xi = {ξ̄ ∈ P
3 | ξ̄

T
Qi ξ̄ = 0} (37)

such that the conic locus describing the elliptical crater is formed by the conic section

Ci = Xi ∩ Pi (38)

Just as points and lines are dual in P
2, points and planes are dual in P

3 (a fact that
should be evident from Eq. 6). It follows therefore, that one may construct a dual
quadric, Q∗

i , such that the quadric envelope is given by

D�
i = {π ∈ P

3 | πT Q∗
i π = 0} (39)

where π is a plane tangent to the quadric. The quadric envelope provides a more
natural way to describe a 3D conic.

The quadric envelope for a 3D conic is generally called the disk quadric [128], and
defines all the planes tangent to the conic curve (see Fig. 8). This may be visualized
as all the planes tangent to an ellipsoid x2/a2+y2/b2+z2/c2 = 1 and letting c → 0,
thus resulting in a 3D disk (i.e., the 3D ellipsoid is collapsed to a plane and resembles
a pancake or dinner plate). The disk quadric is, therefore, defined by a 4 × 4 matrix
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Fig. 8 Visualisation of the disk quadric that defines all of planes tangent to Di lying in the plane Pi . A
few example tangent planes are illustrated in red

Q∗
i that has rank 3. We may compute the disk quadric directly from the crater’s conic

envelope as

Q∗
i ∝

[
HMi

kT

]
C∗

[
HMi

kT

]T

=
[
HMi

C∗
i H

T
Mi

HMi
C∗

i k
kT C∗

i H
T
Mi

kT C∗
i k

]
(40)

which is a 4 × 4 symmetric matrix of rank 3.
The disk quadric is clearly a more direct way to represent the 3D conic than the

intersection of a proper quadric cone and a plane. Thus, the disk quadric is the rep-
resentation of choice when one must concisely describe a 3D conic, such as a crater
located on the surface of the Moon.

Each 3D conic (as defined by the disk quadric) corresponds to a symmetric 4 × 4
matrix of rank 3, up to a scalar. The symmetric 4×4 matrices form a 10-dimensional
vector space, so a nonzero 4 × 4 symmetric matrix corresponds to a point in P

9. The
constraint that the rank is ≤ 3 defines a hypersurface in the projective space P9 given
by the vanishing of the determinant. The set Z of all symmetric 4 × 4 matrices of
rank 3 is an open subset in this hypersurface that parametrizes the set of conics. The
dimension of Z (and the hypersurface) is 9 − 1 = 8.

4.2 Homography and Action of a Projective Camera on a Crater Disk Quadric

If a crater rim is a planar conic, then its projection into an image is also a conic. The
projective transformation from one plane to another is a homography, thus allowing
the appearance of the projected crater ellipse to be computed analytically.

If Ci is a 3D conic (see Eq. 38 and Table 1), we define its perspective projection
into an image as Ai = π(Ci ), where π : P

3 \ {r̄M } → P
2 and r̄M is the camera

location. Thus, we describe the conic locus for Ai within the image as

Ai = {ū ∈ P
2 | ūT Ai ū = 0} (41)
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Table 1 Summary of geometric
primitives related to a 3D crater Coordinate- Homogeneous Description

Free Coordinate

Symbol Representation

Pi π i Plane containing crater rim

Ci Ci Conic locus of crater rim

contour within Pi

C�
i C∗

i Conic envelope of crater rim

contour within Pi

Xi Qi Quadric cone with apex at Moon

center passing through Ci

D�
i Q∗

i Disk quadric describing 3D crater

where ūT = [u v 1] is the homogeneous coordinate representation of the image
pixel coordinate [u, v]. We now introduce a coordinate system to make this projection
explicit.

Consider a calibrated camera with selenographic position rM and attitude TM
C that

views lunar crater i. If ξM is the selenographic position of a point on the rim of crater
i, then its location in the camera frame is simply

ξC = TM
C

(
ξM − rM

)
(42)

As discussed in Ref. [26], we can construct the pinhole camera by letting x̄C ∝ ξC ,
where x̄C is the projected image plane coordinate of the 3D point ξC . With a digital
camera, however, we never observe a point x̄C , but instead we observe the 2D pixel
coordinate uT = [u v] (or ūT = [u v 1]) corresponding to that location in the image
plane. Assuming the camera frame convention from Refs. [24] and [26], we place the
+z axis out of the camera and along the optical axis, the +x axis to the image right
and in the direction of increasing pixel column number, and the y axis completing
the right-handed system. Furthermore, let the origin of the pixel u-v system be in
the upper left-hand corner of the image, the u axis be to the right (increasing pixel
column count), the v axis be down (increasing pixel row count), and integer values of
[u, v] occurring at the pixel centers. With these conventions, the conversion between
image plane coordinates (x̄C) and digital image pixel coordinates (ū) is described by
a simple affine transformation,

⎡
⎣ u

v

1

⎤
⎦ =

⎡
⎣ dx α up

0 dy vp

0 0 1

⎤
⎦
⎡
⎣ x

y

1

⎤
⎦

C

(43)

or, more compactly,

ū = Kx̄C (44)

where the camera calibration matrix K is a function of the five calibration parameters:
dx (and dy) is the ratio of the focal length to pixel pitch in the x (or y) direction, α is
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the detector skewness, and [up, vp] is the coordinates of the principal point (where
the optical axis intersects the image). We generally have excellent knowledge of K
for spacecraft OPNAV applications from in-flight calibration with star field images
[13, 24].

Therefore, the 3D point ξ̄M projects to pixel coordinate ū in the image according
to

ū ∝ PM
C ξ̄M (45)

where PM
C is the camera projection matrix for a specified absolute pose,

PM
C = K

[
TM

C −rC
] = KTM

C

[
I3×3 −rM

]
(46)

The action of a projective camera on a quadric envelope is known to follow [51]

A∗
i ∝ PM

C Q∗
i

(
PM

C

)T

(47)

where Q∗
i is from Eq. 40 and where Ai (which may be computed from A∗

i ) describes
the conic in the image plane tracing the apparent outline of the quadric. This allows
for the analytic projection of the crater’s disk quadric into its apparent ellipse in the
image plane.

The result of Eq. 47 may also be viewed as a homography. Returning to Eq. 45,
substitute the result from Eq. 33 for ξ̄M ,

ū = K
[
TM

C −rC
] [HMi

kT

]
x̄Ei

(48)

ū = HCi
x̄Ei

(49)

where we define HCi
to be the 3 × 3 matrix describing the homography between the

crater plane Pi and the camera’s image plane

HCi
= K

[
TM

C −rC
] [HMi

kT

]
= PM

C

[
HMi

kT

]
(50)

Since HCi
is a homography, the conic locus and conic envelope may be analytically

transformed to the image plane. Observing that

0 = x̄T
Ei
Ci x̄Ei

=
(
H−1

Ci
ū
)T

Ci

(
H−1

Ci
ū
)

(51)

= ūT
(
H−T

Ci
CiH

−1
Ci

)
ū (52)

= ūT Ai ū = 0 (53)

we arrive at the result
Ai ∝ H−T

Ci
CiH

−1
Ci

(54)

HT
Ci
AiHCi

∝ Ci (55)
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It follows, therefore, that
A∗

i ∝ HCi
C∗

i H
T
Ci

(56)

H−1
Ci

A∗
i H

−T
Ci

∝ C∗
i (57)

The result of Eq. 56 is clearly the same as Eq. 47. We often find it convenient to make
explicit the relative scales of Ai and Ci , which may be done by introducing the scale
si . For example,

HT
Ci
AiHCi

= siCi (58)

5 Existence of Invariants from Projections of Crater Patterns

The central premise of this work is that invariant theory is the proper framework for
describing, indexing, and matching patterns of lunar crater rims as seen in digital
images. Recognizing that invariant theory will be unfamiliar to many space scientists
and engineers, we find it worthwhile to develop the concept fully.

Much of the existing literature pursues an ad hoc approach for the construction of
crater pattern descriptors. The lack of a formal framework has led to other authors
proposing descriptors of varying dimension (ranging from two for a pair of craters
[18, 20] to 30 for a triad of craters [110]). However, for a given type of crater pat-
tern there is a specified number of independent projective invariants. Descriptors
with fewer elements than this do not fully exploit the perceptually salient informa-
tion in the image. Descriptors with more elements than this increase complexity of
the matching process without adding any perceptually salient information (the redun-
dant invariants are all algebraic functions of the independent invariants). Thus, ad
hoc schemes for developing crater pattern descriptors generally provide suboptimal
performance, either in terms of descriptive power or computational complexity.

5.1 Preliminaries on Invariant Theory

In invariant theory we study functions on a space that remain unchanged under a
group of symmetries of that space. Invariant theory originated in the 19th century
with pioneering work by Cayley, Clebsch, Gordan, Sylvester, Hilbert, and oth-
ers. Groups of particular interest were the general linear group GLn of invertible
n × n matrices, the special linear group SLn of n × n matrices with determi-
nant 1, orthogonal groups, and finite groups (see [35, 36]). The space of binary
forms of degree d (homogeneous polynomials in 2 variables of degree d) with the
SL2-action described below was extensively studied in the 19th century [106]. If
a(x, y) = a0x

d + a1x
d−1y + · · · + adyd is a binary form of degree d, then a matrix[

p q

r s

]

acts on it by[
p q

r s

]
· a(x, y) = a(px + ry, qx + sy) = a′

0x
d + a′

1x
d−1y + · · · + a′

dyd,
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where a′
0, . . . , a

′
d are polynomial expressions in a0, a1, . . . , ad, p, q, r, s. For d = 2,

the discriminant a2
1 − 4a0a2 is invariant under the SL2-action and every other poly-

nomial invariant is a polynomial expression in the discriminant. Hilbert’s papers
[56, 57] on invariant theory form the foundation of modern algebraic geome-
try in which one studies algebraic varieties. An algebraic variety is a set that is
defined by polynomial equations, and an algebraic group is an algebraic variety
that also has a group structure. Over the 20th century, invariant theory has been
generalized to an action of arbitrary algebraic group G on an arbitrary algebraic
variety V .

5.1.1 Polynomial Versus Rational Invariants

Traditionally the focus has been on polynomial invariants; i.e., polynomial functions
that remain unchanged under the group symmetries. In practice, we generally desire
a set of fundamental invariants. That is, we seek a set of invariants f1, f2, . . . , fr

such that every other polynomial invariant g is a polynomial expression in the fun-
damental invariants: g = G(f1, f2, . . . , fr ) for some polynomial G(x1, . . . , xr )

in r variables. In the language of commutative algebra, the set of all polynomial
functions on the variety V form a commutative ring, which we write as C[V ] (or
R[V ] if we work over the real numbers). The subring generated by f1, f2, . . . , fr

is the set of all polynomial expressions in f1, f2, . . . , fr , which we may write com-
pactly as C[f1, . . . , fr ]. We also define the invariant ring as the set of all invariant
polynomials, forming a subring denoted as C[V ]G .

Now, observe that f1, f2, . . . , fr are fundamental invariants if and only if
C[V ]G = C[f1, f2, . . . , fr ]. Hilbert’s Finiteness Theorem [56, 57] states that there
is a finite list of fundamental invariants for groups such as GLn, SLn, and orthogo-
nal groups. More generally, there is a finite system of fundamental invariants when
the symmetry group is reductive [48, 99]. For a precise definition of reductive, see
Ref. [61]. Not all groups are reductive though, and typically, translation groups may
not be reductive. There are examples where there is no finite set of fundamental
invariants [98]. In many situations the smallest possible number of fundamental poly-
nomial invariants is finite but extremely large compared to the dimension of the
space.

In practical applications, such as computer vision and spacecraft optical naviga-
tion, it may not be feasible to find a fundamental system of invariants. One remedy
is to work with separating invariants (see [34, §2.4]), and it is even simpler to work
with rational invariants. Thus, instead of dealing with polynomial functions, we will
consider rational functions.

Let C(V ) be the set of all rational functions on V , and C(V )G be the set of all
invariant rational functions on V . We assume that V is an irreducible variety so that
C(V ) has the algebraic structure of a field—specifically, it is the quotient field of
the ring C[V ]. We now see that C(V )G is a subfield of C(V ). The reader should
be warned that the quotient field of C[V ]G can be strictly smaller then C(V )G . For
example, it is possible that there are only constant polynomial invariants while there
are non-constant rational invariants. This is another reason why it may be preferable
to work with rational invariants instead of polynomial invariants.

1082 The Journal of the Astronautical Sciences  (2021) 68:1056–1144

1 3



Rational functions are not defined for all points in the space, but are defined for
almost all points—which is good enough for practical crater identification. Invariant
rational functions f1, f2, . . . , fr form a system of fundamental rational invariants if
every other rational invariant g is a rational expression in f1, f2, . . . , fr ; i.e., of the
form G1(f1, . . . , fr )/G2(f1, . . . , fr ) where G1(x1, . . . , xr ) and G2(x1, . . . , xr ) are
polynomials with coefficients in C and G2(f1, . . . , fr ) �= 0. There always exists a
finite system of fundamental rational invariants f1, f2, . . . , fr . In fact, it is possible
to choose r ≤ 1 + dim V (see Remark 1).

5.1.2 Real Versus Complex Rational Invariants

Though the problem of spacecraft optical navigation (and computer vision, more
generally) deals with geometric configurations over the real numbers, we will often
work over the complex numbers. There is not a big difference. In the typical setup,
we have a real algebraic variety VR that parametrizes certain geometric configura-
tions. For example, VR could be a subvariety of the real projective space P

m
R

defined
by homogeneous polynomial equations with real coefficients. The same equations
define also a projective variety VC ⊂ P

m
C

in complex projective space if we view
those equations over the complex numbers. We now assume that VR is Zariski dense
in VC, which means that any complex polynomial that vanishes on VR also vanishes
on VC. In this case, we can view the field R(VR) of real rational functions on VR as
a subfield of C(VC). Moreover, the real and complex part of a rational function in
C(VC) are rational functions on VR. This gives a decomposition

C(VC) = R(VR) ⊕ R(VR)i,

where i = √−1. We also assume that GC is a complex algebraic group acting on the
variety VC, such that the subgroup GR of real group elements acts on VR and GR is
Zariski dense in GC. Then, because GR ⊂ GC is Zariski dense, a complex rational
function is invariant under GC if and only if it is invariant under the group GR. Thus,
we find that

C(VC)GC = C(VC)GR = (R(VR) ⊕ R(VR)i)GR = R(VR)GR ⊕ R(VR)GR i.

In particular, if f1, f2, . . . , fr are real rational invariant functions that generate the
field R(VR)GR over R (i.e., R(VR)GR = R(f1, f2, . . . , fr )), then they also generate
C(VC)GC over C (i.e., C(VC)GC = C(f1, f2, . . . , fr )).

On the other hand, if C(VC)GC = C(f1, f2, . . . , fr ) for some complex rational
invariants f1, f2, . . . , fr , then the real and complex parts of f1, f2, . . . , fr generate
the field R(VR)GR of real rational invariants.

5.1.3 Counting Independent Rational Invariants

As we have seen, the proper counting of independent invariants is a recurring problem
in the crater identification literature. Moreover, the usual method of counting invari-
ants used in classical computer vision studies (e.g., a degrees-of-freedom approach)
is not extensible to the problem at hand. We find it necessary, therefore, to develop
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a more formal framework. This framework is shown to reproduce known results for
simple cases, before being extended to the problem of non-coplanar conics.

Suppose that L is a field and K is a subfield. If f1, f2, . . . , fr ∈ L, then
K(f1, f2, . . . , fr ) is the set of all rational expressions in f1, . . . , fr with coeffi-
cients in K . This is also called the field that is generated by f1, f2, . . . , fr over K .
So by definition, invariant rational functions f1, f2, . . . , fr are fundamental rational
invariants for the action of G on V if and only if C(f1, f2, . . . , fr ) = C(V )G .

In spacecraft navigation, computer vision, and other applications it is often desir-
able to know the maximum number of functionally independent invariants. This
relates to the notion of transcendence degree of a field extension. If f1, f2, . . . , fr

lie in a field, then we say that f1, f2, . . . , fr are algebraically dependent over a
subfield K if there exists a nonzero polynomial P with coefficients in K with
P(f1, f2, . . . , fr ) = 0. The transcendence degree of L over the subfield K is the
supremum over all r for which there exists f1, f2, . . . , fr ∈ L that are algebraically
independent over K . Let trdeg(L/K) be the transcendence degree of L over K .
If L is also a subfield of another field M , then we have the following relation
(see [62, Theorem VI.1.11]):

trdeg(M/K) = trdeg(M/L) + trdeg(L/K).

Remark 1 If V is a variety, then trdeg(C(V )/C) is equal to the dimension of V .
If s = dim V then we can choose f1, f2, . . . , fs algebraically independent. If L =
C(f1, f2, . . . , fs) then we have

s = trdeg(C(V )/C) = trdeg(K/C) + trdeg(C(V )/K) = s + trdeg(C(V )/K)

This shows that C(V )/K is algebraic; i.e., every element of C(V ) is algebraic over
K . If C(V ) �= K , then there exists an element fs+1 ∈ C(V ) with

C(V ) = K(fs+1) = C(f1, f2, . . . , fs+1)

by the Theorem of the Primitive Element (see [72, Theorem 4.6]).

We are particularly interested in trdeg(C(V )G /C) which is the maximal number
of rational invariants that are algebraically independent (over C). Let G · v = {g ·
v | g ∈ G } be the orbit of v ∈ V under the G -action and let Gv = {g ∈ G |
g · v = v} be the stabilizer of v. Then we have dim G = dim(G · v) + dim Gv . If
s = maxv∈V dim(G · v) is the largest dimension of an orbit, then almost all orbits
in V have dimension s and we call s the generic dimension of an orbit in V . The
following results follows from Rosenlicht’s Theorem [122].

Theorem 1 If s is the dimension of a generic orbit in V , then the maximum number
of algebraically independent invariants is equal to dim V − s.

Proof Rosenlicht proved in [122] that there exist a G -stable nonempty (Zariski) open
subset U ⊆ V that has a geometric quotient. A geometric quotient is an algebraic
variety U /G together with a surjective morphism π : U → U /G such that the
fibers of π are exactly all G -orbits and π also has additional properties such as
C(U /G ) = C(U )G = C(V )G . The fibers of π have dimension at most s and almost
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all fibers have dimension s. (Actually one can show that all the fibers have dimension
s.) The maximum number of algebraically independent invariants is

trdeg(C(V )G /C) = trdeg(C(U /G )/C) = dim U /G = dim U − s = dim V − s.

5.2 Rational Invariants for Conics In P2

The result of Theorem 1 is straightforwardly applied to the problem of counting the
rational invariants for coplanar conics (i.e. a d-tuple of conics in P

2). We know from
past results that two coplanar conics have two invariants [41, 96, 115], that three
coplanar conics have seven invariants [116], and that a d-tuple of conics have 5d − 8
invariants [53]. This is now briefly shown, before moving on to the more nuanced
problem of non-coplanar conics.

Therefore, as an illustration, we can count the number of independent rational
invariants for d conics in P

2. A conic in P
2 corresponds to a nonzero quadratic homo-

geneous polynomial in 3 variables, up to scalar (see Eq. 9). So the variety of all conics
can be identified with P

5 because such a polynomial has 6 = 5 + 1 coefficients. Let
V be the variety of d-tuples of conics in P

2, Then V ∼= (P5)d has dimension 5d.
For G we take the group PGL3 which has dimension 8. For d = 1 the group PGL3
acts transitively on all nondegenerate quadratic forms. This means that PGL3 has a
Zariski dense orbit in V = P

5, so the dimension of a generic orbit is s = 5 and the
number of independent rational invariants is dim V − s = 5 − 5 = 0. For d = 2,
we can explicitly compute the stabilizer of a pair of conics (e.g., x2 + 2y2 − z2 = 0
and 2x2 + y2 − z2 = 0) and note that it is finite. This implies that the dimension of
a generic orbit is equal to dim G = 8. This, in turn, implies that the dimension of a
generic orbit is equal to 8 for all d ≥ 2 and the number of algebraically independent
invariants is dim V − s = 5d − 8.

5.3 Rational Invariants for Conics in P3

A method for the robust identification of non-coplanar crater patterns has eluded
spacecraft navigators since autonomous crater-based navigation was first explored
over 25 years ago. The result is that most existing algorithms constrain the problem
to local (nearly coplanar) crater patterns or to only nadir pointing images. To solve
this problem requires us to first understand conics in P

3.

5.3.1 Counting independent rational invariants for conics in P3

Let Z be the 8-dimensional variety introduced at the end of Section 4.1.2 param-
eterizing conics in P

3, and let V = Z d be the space of d conics in P
3. The

15-dimensional group G = PGL4 acts on P
3, Z , and V . If d = 1 then the group acts

transitively on all nondegenerate conics so that V = Z has a dense orbit and there
are no non-constant rational invariants. Thus, we search for invariants when d ≥ 2.

Suppose that d = 2 and consider the pair of conics C1 and C2. If the conics are
generic enough, then the stabilizer of the pair (C1, C2) is finite. To see this, suppose
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that g ∈ PGL4 lies in the connected component of the identity in the stabilizer of
(C1, C2). Then g must also fix the planes P1 and P2 through C1 and C2 respectively.
Further, g must also fix the intersections C2 ∩ P1 = {c̄(1)

2 , c̄(2)
2 } and C1 ∩ P2 =

{c̄(1)
1 , c̄(2)

1 } and because g lies in the connected component of the identity, it fixes all

the points c̄(1)
1 , c̄(2)

1 , c̄(1)
2 , c̄(2)

2 on the line P1 ∩ P2 individually. There are two points

r̄(1)
1 , r̄(2)

1 on C1 such that the tangent lines to C1 at r̄(1)
1 and r̄(2)

1 go through c̄(1)
2 . So g

must also fix r̄(1)
1 and r̄(2)

1 . Among r̄(1)
1 , r̄(2)

1 , c̄(1)
1 , c̄(2)

1 in the plane P1 there are no three
points on the line (Fig. 9), because they all lie on the same conic C1. This implies
that g must fix all the points in the plane P1. Similarly it must fix all the points in
the plane P2. From this follows that g is the identity element in PGL4. Thus, the
dimension of a general orbit is equal to dim PGL4 = 15, and the same is true for all
d ≥ 2. It follows, therefore, that the maximal number of algebraically independent
rational invariants for d ≥ 2 conics is dim V − 15 = 8d − 15.

This result agrees with the past literature that has identified one independent
rational invariant for a pair of conics in P

3 [65, 114]. Our result, however, is more
general and prepares us to study which invariants (if any) may be recovered from the
projection of conics into an image.

5.4 Calculating Invariants from Projections

In Section 5.3.1, we found the invariants for a d-tuple of conics in P
3. These, how-

ever, are not the invariants we need because we do not measure the crater rims directly
in P

3. Instead, we image the lunar surface with a camera. Thus, we are in search of
rational invariants that may be computed from only the projected crater rims that we
see in an image. Such invariants do not always exist.

5.4.1 Invariants from Projections and the Action of PGL4

We begin by discussing the general setup for computing invariants from projections.
To do this, we consider models M in C

3 space that are parameterized by some variety

Fig. 9 Since r̄(1)
1 , r̄(2)

1 , c̄(1)
1 , c̄(2)

1 all lie on C1 no three of these points may be on the same line
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V . For example, V can consist of all d-tuples of points in 3D, or all d-tuples of
conics. We also have camera position ō ∈ C

3 and a perspective projection π : C3 \
{o} → P

2. We are interested in rational functions on V (functions depending on the
model M) that can be computed from the projected image π(M) in a way that is
independent on the camera position ō. We can extend C

3 to the projective space P
3

and also extend the camera projection to a map P
3 \ {ō} → P

2, where ō is equal
to o ∈ C

3 ⊂ P
3, but viewed in P

3. The group PGL4 acts on P
3 and contains the

group of affine transformations of C3. The group PGL4 does not act on C
3, but it acts

on the field of rational functions on C
3, because C

3 and P
3 have the same rational

functions. We assume that the class of models parameterized by V is closed under
the action of PGL4 (for example, PGL4 takes conics to conics). Then PGL4 also acts
on the rational functions on V .

Suppose that f is a rational function on V such that f (M) can be computed from
the projected image π(M) in such a way that it does not depend on the choice of the
position ō of the camera. So there exists a function h such that f (M) = h(π(M))

for every choice of ō. Let Gō be the image of the group
⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
x y z w

⎤
⎥⎥⎦
∣∣∣w �= 0

⎫⎪⎪⎬
⎪⎪⎭

in PGL4. An element g ∈ Gō fixes ō and all the lines through ō, so we have

f (g · M) = h(π(g · M)) = h(π(M)) = f (M).

So f is invariant under the action of Gō. Since this is true for every choice of ō, we
see that f is invariant under the group G generated by all Gō, ō ∈ P

3. One can verify
that G = PGL4. To see this, for example, we observe that the group G is closed
under conjugation with elements in PGL4. This implies that G is a non-trivial normal
subgroup of PGL4. Since PGL4 is known to be a simple group, we get G = PGL4.
This shows that any rational function that can be computed from a camera projection
in a way that is independent on the choice of the position of the camera must be
invariant under the action of PGL4.

5.4.2 Invariants from Projections of Points in P3

The simplest example of invariants from projections is the case of a d-tuple of points
in P

3. It is well known that d arbitrarily placed 3D points possess no invariants that
one may compute from their projection in an image [16, 28]. Thus, a cloud of random
3D points cannot be indexed for recognition by a pose invariant descriptor, which is
a critically important fact. We reproduce this known result here in our more formal
framework. In doing so, we develop some of the ideas and tools necessary for the
case of conics in P

3 but within the context of a simpler (and familiar) example.
Therefore, for example, suppose we have d points in P

3. For d ≥ 5 there are
3d−15 independent invariants for the action of PGL4 (because for d ≥ 5, the generic
stabilizer in (P3)d is finite). Perspective projection for some fixed cameragives d
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points in P
2. Unfortunately, however, no non-constant rational invariant can be com-

puted from just the image. This may seem counter-intuitive, and we now show why
this is the case.

Suppose we fix a model M ∈ (P3)d consisting of d points. The image may change
in appearance with varying camera viewpoint, with the projection being governed by
the action of PGL4. The variety of the possible images from the model as we move
the camera cuts out a variety U ⊆ (P2)d of dimension at most dim PGL4 = 15. For
d ≥ 8, the dimension of U is strictly smaller than the dimension of (P2)d and one
might expect to have at least 2d − 15 independent invariants that can be computed
from the images, but this is wrong as we will see. The problem is that Theorem 1 does
not apply. The variety U of possible images is not an orbit for any group action on
(P2)d : the group PGL4 does not act on (P2)d , and U may be bigger than any PGL3
orbit.

To proceed, suppose that V = (P3)d and Y = (P2)d , ō ∈ P
3 is the position

of the camera, and π : V → Y is the projection. (The map π is only defined for
elements in (P3 \ {ō})d .) If h ∈ C(Y ) is a rational function, then we can pull it back
to get a rational function π�h = h ◦ π ∈ C(V ), where ◦ is the composition. Using
the inclusion π� : C(Y ) ↪→ C(V ) we may view C(Y ) as a subfield of C(V ). We
are interested in rational invariants that can be computed from the image in Y . Such
invariants are exactly elements in the intersection field C(Y ) ∩ C(V )G . We get the
following diagram of field extensions with their transcendence degrees:

We will see that C(Y ) ∩ C(V )G = C, which means that that there are no non-
constant rational invariants that can be computed from the image. Suppose that f ∈
C(Y ) ∩ C(V )G , or to be more precise, there exists an h ∈ C(Y ) such that f =
h ◦ π ∈ C(V )G . We will show that f (and h) must be constant.

To understand what is happening, we introduce an equivalence relation ∼ on
(P2)d , the variety of possible images of d points in P

2. We say I1 ∼ I2 is true when
there exists a model M such that I1, I2 both appear as images of M (but possible
from different camera positions). The relation ∼ is not an equality relation. It satis-
fies the reflexivity axiom (I ∼ I) and the symmetry axiom (I1 ∼ I2 ⇔ I2 ∼ I1).
However, it does not satisfy the transitivity axiom (if I1 ∼ I2 and I2 ∼ I3, then
I1 ∼ I3). If π and π ′ are the projections with respect to different camera posi-
tions/orientations, then π ′ is obtained from π by a projective linear transformation g,
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so that π ′(M) = π(g · M) for any model M. If I ∼ I ′, then we have I = π(M)

and I ′ = π ′(M) for some model and some camera projections π, π ′. This means
that h(I) = h(π(M)) = f (M) = f (g · M) = f (π(g · M)) = h(I ′).

Let ≡ be the equivalence relation generated by ∼. So we say that I ≡ I ′ if and
only if there is a finite sequence of images I = I0, I1, I2, . . . , Ir = I ′ such that
I0 ∼ I1, I1 ∼ I2, . . . , Ir−1 ∼ Ir . If I ≡ I ′ and I0, I1, . . . , Ir are as above, then
f (I) = f (I0) = f (I1) = · · · = f (Ir ) = f (I ′).

We will now show that I ≡ I ′ for all images I, I ′ ∈ Y . Let (p̄1, p̄2, . . . , p̄d) ∈
(P2)d = Y and q̄1 ∈ P

2. Define ō ∈ P
3 as the position of a camera and

π : P3 → P
2 as the camera projection. Let L1,L2, . . . ,Ld ,N1 be the lines through

ō in P
3 corresponding to the points p̄1, p̄2, . . . , p̄d , q̄1 respectively. Now, as shown

in Fig. 10, define P as the plane through the lines L1 and N1 (which intersect at
ō). Let us choose another camera position ō′ in the plane P randomly. We randomly
choose points ā1, ā2, . . . , ād on the lines L1,L2, . . . ,Ld respectively (i.e., the points
ā1, ā2, . . . , ād are in general position). Let L′

j be the line through ō′ and āj for all j .
Since ō′ and ā1 lie in the plane P , so does the line L′

1. Therefore, the lines L′
1 and

N1 intersect at some point b̄1. Now we have (p̄1, p̄2, . . . , p̄d) = π(ā1, ā2, . . . , ād)

and (p̄′
1, p̄

′
2, . . . , p̄

′
d) = π ′(ā1, ā2, . . . , ād) so (p̄1, p̄2, . . . , p̄d) ∼ (p̄′

1, p̄
′
2, . . . , p̄

′
d).

Moreover, we have (p̄′
1, p̄

′
2 . . . , p̄′

d) = π ′(b̄1, ā2, . . . , ād) and (q̄1, p̄2, . . . , p̄d) =
π(b̄1, ā2, . . . , ād), so (p̄′

1, p̄
′
2, . . . , p̄

′
d) ∼ (q̄1, p̄2, . . . , p̄d). From this follows that

(p̄1, p̄2, . . . , p̄d) ≡ (q̄1, p̄2, . . . , p̄d). Repeating this argument shows that for any
points p̄1, p̄2, . . . , p̄d , q̄1, q̄2, . . . , q̄d ∈ P

2 we have

(p̄1, p̄2, . . . , p̄d) ≡ (q̄1, p̄2, . . . , p̄d) ≡ (q̄1, q̄2, p̄3, . . . , p̄d) ≡ · · · ≡ (q̄1, q̄2, . . . , q̄d).

Fig. 10 Visualization of geometric quantities used to show the non-existence of invariants from the pro-
jection of arbitrary points in P

3. Illustrated here are the line-point sets L1 ∩ L′
1 = ā1, N1 ∩ L′

1 = b̄1,
L2 ∩ L′

2 = ā2, and L3 ∩ L′
3 = ā3 that result from the two camera locations ¯̄o and ¯̄o′. All quantities in

black lie in the plane P
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So we have (p̄1, p̄2, . . . , p̄d) ≡ (q̄1, q̄2, . . . , q̄d). We conclude that
h(p̄1, p̄2 . . . , p̄d) = h(q̄1, q̄2, . . . , q̄d). In other words, h and f are constant.

5.4.3 Invariants from Projections of Conics in P3

The corollary to a d-tuple of arbitrary points in P
3 is a d-tuple of arbitrarily placed

conics in P
3. We will show that there are no non-constant invariants for d conics in

P
3 that can be computed from a perspective projection. The argument is similar to the

argument in Section 5.4.2 using an equivalence relation on d-tuples of conics in P
2.

We use an explicit geometric construction to show that all d-tuples are equivalent.
As before, let Z be the variety of conics in P

3 defined at the end of Section 4.1.2.
Then, let V = Z d be the variety of d-tuples of conics in P

3 and Y = (P5)d

be the variety of d-tuples of conics in P
2. We define a relation ∼ on Y by

(A1,A2, . . . ,Ad) ∼ (A′
1,A′

2, . . . ,A′
d) if there exists two camera projections π

and π ′ and conics (C1, C2, . . . , Cd) with π(C1, C2, . . . , Cd) = (A1,A2, . . . ,Ad) and
π ′(C1, C2, . . . , Cd) = (A′

1,A′
2, . . . ,A′

d). Let ≡ be the equivalence relation generated
by ∼.

Suppose that B1,A1,A2, . . . ,Ad ⊆ P
2 are conics. Let �(1), �(2) be two lines

in P
2 that are tangent to both A1 and B1 with A1,B1 within the same region of

P
2 \ (�(1) ∪ �(2)) (see Fig. 11).

We denote the point at which �(j) is tangent to A1 (respectively B1) by ā(j)

1

(respectively b̄
(j)

1 ). Also, let q̄ be the intersection point of �(1) and �(2). Choose a
point ō ∈ P

3 (the center of the camera) and let π : P
3 \ {ō} → P

2 be the cam-
era projection. Let Xi = π−1(Ai ) ∪ {ō} be the cone with top ō that corresponds
to Ai ⊂ P

2. Also, define Y1 = π−1(B1) ∪ {ō}. The lines �(j) correspond to the
plane L(j) = π−1(�(j)) ∪ {ō} for j = 1, 2. The planes L(1) and L(2) intersect
in the line Q = π−1(q̄) ∪ {ō}, as shown in Fig. 12. We choose another point ō′
on the line Q and π ′ : P

3 \ {ō′} → P
2 is the camera perspective projection with

respect to the camera position ō′. We choose some random plane P in P
3. Then

Fig. 11 Visualization of geometric quantities used to show the non-existence of invariants from the pro-
jection of arbitrary conics in P

3. The conics and lines in this graphic all lie within the image plane. The
backprojection of these planar quantities into P

3 form quadric cones (for A1 and B1) or planes (for �(1)

and �(2))
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Fig. 12 Visualization of geometric quantities used to show the non-existence of invariants from the pro-
jection of arbitrary conics in P

3. The lines T (1) and S(1) lie in plane L(1) (lines are white, plane is gray).
The lines T (2) and S(2) lie in plane L(2)

Cj = P ∩ Xj is a conic in P
3 and π(Cj ) = Aj . Let X ′

j be the cone with top ō′
through Cj . By construction, we have π(C1, C2, . . . , Cd) = (A1,A2, . . . ,Ad) and
π ′(C1, C2, . . . , Cd) = (A′

1,A′
2, . . . ,A′

d) for some conics A′
1, . . . ,A′

d in P
2. We will

construct a conic D1 in P
3 with π(D1) = B1 and π ′(D1) = A′

1. Note that X ′
1

is a cone with top ō′ that is tangent to the planes L(1) and L(2). The intersection

S(j) = Y1 ∩L(j) = π−1(b̄
(j)

1 )∪{ō} is a line through ō, and T (j) = X ′
1 ∩L(j) is a line

through ō′ for j = 1, 2. Let r̄(j) be the intersection point of the lines S(j) and T (j)

in the plane L(j) for j = 1, 2. Then we have π(r̄(j)) = b̄
(j)

1 . Moreover we choose a
point r̄(3) �= r̄(1), r̄(2) that lies on Y1 ∩ X ′

1. Let R be the plane through r̄(1), r̄(2), r̄(3).
Define D1 = R ∩ X ′

1. Then D1 is tangent to the planes L(1) and L(2) at the points
r̄(1) and r̄(2) respectively. Now π(D1) and B1 both are tangent to �(1) and �(2) at the

points b̄
(1) = π(r̄(1)) and b̄

(2) = π(r̄(2)) respectively, and both contain the point
π(r̄(3)). It follows that π(D1) = B1 because a conic in P

2 is determined by 3 points
and the tangent lines at 2 of the points. One would expect the intersection Y1 ∩X ′

1 of
two quadratic surfaces to be a curve of degree 4. In this case, the curve is reducible,
and a union of two conics, and D1 is one of them.

It follows that (B1,A2,A3, . . . ,Ad) = π(D1, C2, . . . , Cd) and (A′
1,A′

2, . . . ,

A′
d) = π ′(D1, C2, . . . , Cd), and therefore (B1,A2, . . . ,Ad) ∼ (A′

1,A′
2, . . . ,A′

d).
If we combine this with (A′

1,A2, . . . ,A′
d) ∼ (A1,A2, . . . ,Ad) then we get

(B1,A2, . . . ,Ad) ≡ (A1,A2, . . . ,Ad). Repeating the argument shows that

(A1,A2, . . . ,Ad) ≡ (B1,B2, . . . ,Bd)

for all conics A1,A2, . . . ,Ad ,B1,B2, . . . ,Bd . This implies that there is no noncon-
stant rational invariant for d conics in P

3 that can be computed from a projection.
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That no rational invariants exist for the projection of d arbitrary conics is an impor-
tant finding (which we believe to be a novel result). This clearly precludes the use of
invariants for lost-in-space crater identification about an arbitrarily shaped body. For-
tunately, celestial bodies large enough to exhibit substantial cratering do not have an
arbitrary shape. The surface of these bodies can usually be modeled regionally—if
not globally—as a nondegenerate quadric surface. Specifically, we note that plan-
ets, moons, and dwarf planets are generally ellipsoidal in global shape [90] (this is
certainly the case for the Moon), while the smaller minor planets are often globally
irregular but regionally ellipsoidal. Comets nuclei often show no such structure. Fur-
ther, many large bodies (e.g., the Moon) appear nearly planar over sufficiently small
portions of the surface. We know from before that invariants exist for coplanar conics
(Section 5.2). We now show that invariants also exist for non-coplanar conics lying
on a quadratic surface (a quadric).

5.5 Counting Invariants for Conics on a Nondegenerate Quadric Surface

As we have seen, there are no nontrivial invariants for d-tuples of arbitrary conics
in 3D space that can be computed from a camera image. In the case of craters on
the Moon, the conics we are interested in are not arbitrary, but lie on the surface of
the Moon. Thus, instead of considering d-tuples of arbitrary conics, we consider the
variety V of d-tuples of conics for which there exists a nondegenerate quadric surface
that contains all of them. We find projective invariants to exist for d ≥ 3 conics lying
on the same nondegenerate quadric surface.

5.5.1 Pairs of Conics on a Nondegenerate Quadric Surface

First consider the case d = 2. Suppose that C1 and C2 are two conics that lie in the
planes given by the linear equations f1 = 0 and f2 = 0 respectively. Then C1 and
C2 lie in the degenerate quadric surface f1f2 = 0. Suppose both conics also lie on
a nondegenerate surface defined by a quadratic equation g = 0. This surface is not
unique, because for every t , the surface defined by g + tf1f2 = 0 contains both
conics. If two conics C1 and C2 lie on a nondegenerate surface defined by g = 0,
then C1 is defined by f1 = g = 0 and C2 is defined by f2 = g = 0. The inter-
section C1 ∩ C2 is defined by f1 = f2 = g = 0 and consists of two (possibly
complex) points. On the other hand, if C1 ∩ C2 consists of two points, one can show
that both conics lie on a nondegenerate quadric surface. To find a pair (C1, C2) in
V , we can choose the conic C1 arbitrarily in the 8-dimensional variety of conics, we
choose the plane P2 that contains C2 in the 3-dimensional space of hyperplanes, Now
the conic C2 is an element of the 5-dimensional variety of conics in P2, but there
are two constraints because the conic has to go through the two points of C1 ∩ P2.
So the dimension of the variety V is 8 + 3 + (5 − 2) = 14. The 15-dimensional
group PGL4 acts on V . Let H be the connected component of the identity in the
stabilizer of (C1, C2) ∈ V . The conics C1 and C2 intersect in two (possibly com-
plex) points c̄1 and c̄2. So g will fix the points c̄1 and c̄2. If L is the line through c̄1
and c̄2 then g will map L to itself. If c̄3 is a 3rd point on L then g may map c̄3 to
another point of L. However, if g also fixes the point c̄3 then a similar argument as in
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Section 5.3.1 shows that g must fix the planes P1 and P2 pointwise, and must be the
identity. This shows that the stabilizer of the pair (C1, C2) is at most 1-dimensional.
Since the generic stabilizer has dimension at most 1, the dimension of a generic orbit
is at least 15 − 1 = 14. Since dim V = 14, this implies that there are no rational
invariants for a pair of conics lying on a nondegenerate quadric surface.

5.5.2 Many (d ≥ 3) Conics on a Nondegenerate Quadric Surface

Let us now assume that d ≥ 3. If a quadric surface S contains 3 distinct conics
C1, C2, C3 then S is the unique quadric surface that contains these three conics. To see
this, suppose that S′ is another quadric surface through the 3 conics. Suppose that S

and S′ are defined by the equations h = 0 and h′ = 0 respectively, where h and h′ are
homogeneous quadratic polynomials in 4 variables. Let Pi be the plane through Ci

given by fi = 0 where fi is a linear function. Let ā ∈ P
3. We can multiply h and h′

with nonzero scalars such that (h − h′)(ā) = 0. In the plane Pi , the restriction of the
quadratic polynomial h−h′ vanishes on Ci ∪{ā}. This implies that h−h′ is divisible
by fi for i = 1, 2, 3. But then h − h′ is divisible by f1f2f3 and h − h′ must be zero.

To parametrize d conics that lie on a quadric surface, we can first choose the
surface that is given by a quadratic polynomial in 4 variables up to a scalar. Such a
polynomial has 10 coefficients, so the quadric surface is determined by 10 − 1 = 9
parameters. Now, each of the conics is determined by a hyperplane section of the
quadric surface. Hyperplanes are parameterized by points in P

3. So the variety V of
d-tuples of conics that lie on a common quadric surface has dimension 9 + 3d. The
stabilizer of a generic point in V is finite, so the dimension of a generic orbit is 15 =
dim PGL4. So the number of independent rational invariants is (9+3d)−15 = 3d−6
for d ≥ 3.

6 Computing Invariants from Crater Rims in an Image

The results of Section 5 established the existence of invariants for conics lying
on either a plane or a nondegenerate quadric surface. While the coordinate-free
approach used in the previous section is a powerful tool for studying such invariants,
we must ultimately impose a coordinate system for practical computation of these
invariants from data. Doing so is straightforward, but does require some additional
mathematical machinery. The details are now discussed.

6.1 Geometry of Invariants for Non-Coplanar Conics

6.1.1 Pair of Arbitrary Non-Coplanar Conics

Two arbitrary 3D conics do not generally intersect one another, even over the com-
plex numbers. This may be seen through the intersection of surfaces (illustrated
in Fig. 13). The line formed by the intersection of the two conic planes intersects
each conic at two places, producing four intersection points. The cross-ratio of these
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Fig. 13 Two arbitrarily placed non-coplanar conics do not intersect one another. The common 3D line Lij

formed by the intersection of their planes intersects each of the two conics in two places, creating four
(usually distinct) points. The two intersection points for a particular conic are complex valued if Lij does
not physically intersect that conic. The four colinear intersection points (possibly complex valued) may be
used to form a cross-ratio, which is the single unique 3D invariant for a pair of 3D conics

four colinear points is the unique 3D invariant for a pair of non-coplanar conics.
This was observed in [87] and [114], which we now rederive by other means as we
build towards a methods for computing projective invariants. Further, the results of
Section 5.3.1 tell us that this is the only 3D invariant for a pair of non-coplanar con-
ics. We also show that this 3D invariant does not lead to a useful projective invariant
that may be constructed from an image of these two conics.

Suppose we have crater i described by the 3D conic Ci that lies in plane Pi . Let
the Moon-centered quadric cone of crater i be given by Xi as described in Eq. 37. By
construction, this cone must pass through the conic locus Ci , and we interpret Ci as
the conic section from Eq. 38.

Now, suppose we have two craters: crater i and crater j . We compute their
intersection by substitution of Eq. 38 as,

Ci ∩ Cj = (Pi ∩ Xi ) ∩ (
Pj ∩ Xj

) = (
Pi ∩ Pj

) ∩ Xi ∩ Xj (59)

Define the 3D line Lij as the intersection of planes Pi and Pj ,

Lij = Pi ∩ Pj (60)
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such that

Ci ∩ Cj = Lij ∩ Xi ∩ Xj = (
Lij ∩ Xi

) ∩ (
Lij ∩ Xj

)
(61)

The intersection of a line with a quadric cone, e.g. Lij ∩ Xi , produces two points.

Define the intersection points of this line with crater i as {c(1)
i , c(2)

i }. It is easy to see,
as illustrated in Fig. 13, that these intersection points are not generally the same for
two arbitrary conics. Therefore,

Ci ∩ Cj = {c(1)
i , c(2)

i } ∩ {c(1)
j , c(2)

j } = ∅ (62)

Observe that the four points {c(1)
i , c(2)

i , c(1)
j , c(2)

j } are colinear since they all lie on the
line Lij . They are also distinct, meaning their cross ratio ρij is a 3D invariant of the
conic pair [114]

ρij = Cr(c(1)
i , c(2)

i , c(1)
j , c(2)

j ) (63)

The difficulty with this 3D invariant is that it is not recoverable from a sin-
gle image of the two conics. The two 3D conics will project into two coplanar
conics in the image plane. The image conics have four (often complex valued)
intersection points, which are not necessarily colinear. In the absence of other con-
straints, these intersection points in the image plane are not related to the 3D line
Lij or its intersection points {c(1)

i , c(2)
i , c(1)

j , c(2)
j } with the two 3D conics. This

is because the two conics do not actually intersect one another. That no projec-
tive invariant exists from a pair of non-coplanar conics agrees with the findings of
Section 5.4.3. The non-existence of projective invariants for three or more arbitrarily
placed non-coplanar conics follows by similar arguments.

In the special case where the conics do intersect one another, their intersection is
preserved when imaged from an arbitrary pose by a projective camera. One of the
most flexible ways to ensure two 3D conics intersect over the complex numbers is
to constrain them to lie on a nondegenerate quadric surface (e.g., sphere, ellipsoid).
This is now shown.

6.1.2 Pair of Non-Coplanar Conics on a Nondegenerate Quadric Surface

Consider lunar craters modeled as conics lying on a nondegenerate quadric surface
S. Under this assumption, we may model the surface of Moon by the quadric locus
parameterized by QM ,

S =
{
ξ̄ ∈ P

3 | ξ̄
T
QM ξ̄ = 0

}
(64)

We observe here that the quadric surface need not be a global surface fit, but only
a good approximation of the portion of the lunar surface where the craters reside.
Indeed, some crater clusters may use one quadric surface while other crater clus-
ters use a different quadric surface. This choice in no way affects the theoretical
developments that follow.
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Now, consider crater i lying on plane Pi . For the 3D rim of a crater i to also be
on the surface of the Moon, it must lie on the intersection of this plane with the S.
Therefore, the 3D conic locus for crater i must be the intersection

Ci = Pi ∩ S (65)

which produces a circular crater if S is a sphere. An ellipsoidal (non-spherical) body
would generally produce an elliptical crater. The discussion that follows holds for
both spherical and ellipsoidal bodies.

Further, as in Section 6.1.1 and described in Eq. 38, the crater may also be viewed
as the conic section produced by intersecting plane Pi with the Moon-centered
quadric cone Xi . However, since the crater must lie on both Xi and S, it is clear that
we can also write the 3D crater conic as,

Ci = Xi ∩ S (66)

Therefore, we see that

Ci = Xi ∩ S = Pi ∩ S (67)

Suppose we have two craters: Ci and Cj . Because Ci and Cj are formed by the
intersections of planes Pi and Pj with the quadric surface S, we observe that,

Ci ∩ Cj = (Pi ∩ S) ∩ (
Pj ∩ S

) = (
Pi ∩ Pj

) ∩ S = Lij ∩ S (68)

where Lij is the 3D line formed by the intersection of the two crater planes (see
Eq. 60). This is illustrated in Fig. 14.

If the two craters physically intersect, the line Lij pierces S and the intersection
points are real. If the craters do not physically intersect, the intersection occurs over
the complex numbers. Let s̄(1)

ij and s̄(2)
ij be the two intersection points

{s̄(1)
ij , s̄(2)

ij } = Lij ∩ S (69)

Therefore, define Pij as the plane passing through the center of the Moon and the line

Lij (or, equivalently passing through the center of the Moon, s̄(1)
ij , and s̄(2)

ij ). Clearly,
the numerical stability of computing Pij in this manner is poor if the craters are close
to one another and Pi and Pj are nearly coplanar. Better numeric stability may be
achieved by taking a different approach.

The conic intersection from Eq. 68 may also be written in terms of the quadric
cones instead of the planes,

Ci ∩ Cj = (Xi ∩ S) ∩ (
Xj ∩ S

) = (
Xi ∩ Xj

) ∩ S (70)

Without constraints, the intersection of two cones Xi∩Xj is a set of four lines passing
through the center of the Moon that pierce S at eight different points. Four of the
points will be on the wrong side and come from conics that do not actually exist;
these can be ignored. When the conics lie on a nondegenerate quadric surface, we
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Fig. 14 Two non-coplanar conics Ci and Cj lying on a nondegenerate quadric surface must intersect in
two points (which happen to be complex valued in this example). The two intersection points lie on the
line Lij formed by the intersection of the two crater planes. The intersection points also lie in the plane
Pij formed by the join of Lij and the body center

find the other four intersection points are a set of repeated intersections. To see this,
combine the above results to find,

(
Xi ∩ Xj

) ∩ S = Ci ∩ Cj = Lij ∩ S = {s̄(1)
ij , s̄(2)

ij } (71)

The advantage of using the quadric cone intersections to describe s̄(1)
ij and s̄(2)

ij is
that this remains well defined and more numerically stable as the craters become
close and their planes become nearly parallel. This is especially important when
viewing craters at a local level, where craters are nearly coplanar.

Since the points s̄(1)
ij and s̄(2)

ij lie on Ci , the projection of these points lie on the
projection of Ci (which we called Ai). The same holds for Cj , and its projection

Aj . Therefore,the projection of s̄(1)
ij and s̄(2)

ij is recoverable as two of the intersection
points of the image conics. That is,

ū(k)
ij = PM

C s̄(k)
ij ⊂ Ai ∩ Aj , k = 1, 2 (72)

where PM
C is the projection matrix from Eq. 46 and the pixel coordinate ū(k)

ij is the

projection of s̄(k)
ij into the image.

The challenge, therefore, is to determine which of the four intersection points of
Ai and Aj are the projection of s̄(1)

ij and s̄(2)
ij . There are six possible combinations of

these four points, corresponding to six possibilities for the projection of line Lij into
the line �ij . We now discuss how to uniquely compute �ij .
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Consider the two conics Ai and Aj described by the conic locus matrices Ai and
Aj . We recall that

ūT Ai ū = 0 and ūT Aj ū = 0 (73)

It follows that we can form a pencil of conics parameterized by the scalar ratio λ : μ

that also pass through the same four intersection points as Ai and Ai ,

ūT
(
λAi + μAj

)
ū = 0 (74)

If we force the matrix λAi +μAj to be a degenerate conic, then it becomes two lines
(or a double line) and we may find its intersection with the two conics. We find six
possibilities, one of which is the line �ij that we seek.

Letting μ = 1 for easy computation, we force the conic to be degenerate by setting
the determinant to zero,

det
(
λAi + Aj

) = 0 (75)

Since both Ai and Aj are full rank and well-conditioned, we may rewrite this as

det
[
Aj (−Ai )

−1 − λI3×3

]
= 0 (76)

which is a simple 3 × 3 eigenvalue problem. When there is no actual intersection of
the two conics in the image, only one of the resulting degenerate conics will produce
real valued lines [117]. The specific line we seek is �ij , which is the projection of Lij .
As the intersection of two non-coplanar planes, Lij is real valued by construction.
Thus, its projection �ij is also real valued. Therefore we always seek the eigenvalue
leading to a degenerate conic of real valued lines, discarding the four complex valued
line possibilities. It will soon become apparent which eigenvalue to choose.

Therefore, suppose we choose one of the eigenvalues to construct the degenerate
conic formed by

Bij = λAi + Aj (77)

where we observe that Bij has rank 2. The remaining steps are now to find the lines
described by Bij , determine if they are real valued, and then determine which one is
�ij .

A degenerate conic made of two lines, g and h, is defined by the symmetric matrix

Bij = ghT + hgT (78)

where our task is now to find g and h given Bij . There are a variety of ways to
accomplish this task. Our specific approach is similar to the framework outlined in
[117]. Therefore, proceeding in this way, we first recall that the intersection of the
two lines in homogeneous coordinates is computed as [51]

z̄ = g × h (79)
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Further, observing that

[z̄×] = ghT − hgT (80)

we find that that

Bij + [z̄×] =
(
ghT + hgT

)
+
(
ghT − hgT

)
= 2ghT (81)

is a rank one matrix with columns proportional to g and rows proportional to h. We
must now find z.

To do this, a quick calculation will confirm that

B∗
ij =

(
ghT + hgT

)∗ = − (g × h) (g × h)T = −z̄z̄T (82)

Or, in terms of the original ellipses,

B∗
ij = (

λAi + Aj

)∗ = −z̄z̄T (83)

The diagonals of −B∗
ij are the squares of the elements of z̄. Thus, defining the

columns and elements of B∗
ij as

B∗
ij = [

b∗
1 b∗

2 b∗
3

] =
⎡
⎣ b∗

11 b∗
12 b∗

13
b∗

21 b∗
22 b∗

23
b∗

31 b∗
32 b∗

33

⎤
⎦ (84)

any column of B∗
ij may be scaled to find z̄ according to

z̄ = −b∗
k/

√
−b∗

kk (85)

where any k ∈ {1, 2, 3} with bkk �= 0 will work. Best numerical performance is
achieved by selecting the value for k that yields maxk ‖b∗

kk‖. If the ellipses do not
intersect, only one eigenvalue from Eq. 76 will produce a real valued estimate of z.
The eigenvalue to choose is the one that makes the diagonal of B∗

ij negative.
Therefore, with z̄ known, compute D

D = Bij + [z̄×] = 2ghT (86)

we can then compute g from any non-zero column of D and h from any non-zero row
of D. In general, it is best to find the element of D with the largest absolute value and
pick the corresponding row and column for g and h.

Given the two lines g and h, one of these corresponds to �ij . The other does not.
Each of the lines g and h divide P

2 into two regions. Since the line we seek comes
from the projection of Lij = Pi ∩Pj , the two conics must not lie in the same region.
That is, we seek a line that passes between the two conics. Only one line will satisfy
this condition and this is the line we choose for �ij .

If we were to compute the intersection of �ij with either Ai or Aj we would obtain

two points that are the projection s̄(1)
ij and s̄(2)

ij . Fortunately such a computation is not
necessary since we work directly with �ij in subsequent discussions.
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Briefly, we observe that Ci and the two points s̄(1)
ij and s̄(2)

ij all lie in the plane Pi .
While a projective invariant exists for two points and a conic (all coplanar) [41], the
points must not lie on the conic. Since s̄(1)

ij and s̄(2)
ij lie on Ci by construction, we seek

an alternative way of constructing an invariant.
Consider instead the 2D line �ij formed by the projection of 3D line Lij (or, equiv-

alently, by the join of image points ū(1)
ij and ū(2)

ij ). While there is not an invariant for
a single line and a conic, there is an invariant for two lines and a conic [123]. This
motivates the study of invariants for a triad of craters.

6.1.3 Triad of Non-Coplanar Conics on a Nondegenerate Quadric Surface

Suppose a projective camera observes three craters: Ci , Cj , and Ck . The intersection
of the corresponding planes (Pi , Pj , and Pk) produces the three 3D lines Lij , Lik ,
and Ljk . Three planes intersect in a point, which is also the location where the 3D
line formed by two planes intersects the third plane. This point, defined as aijk , is the
apex of the pyramid formed by the three planes,

aijk = Pi ∩ Pj ∩ Pk = Lij ∩ Pk = Lik ∩ Pj = Ljk ∩ Pi (87)

Now, let the three 3D craters Ci , Cj , and Ck project to 2D conics Ai , Aj , and Ak

in the image. For any given pair of 3D conics (e.g., Ci and Cj ), the 3D line through
their intersection points (e.g., Lij ) is coplanar with both of these 3D conics and it is
possible to recover its projection (e.g., �ij ) from just the projected image conics (e.g.,
Ai and Aj ). Thus, for a triad of observed craters in an image, we may compute the
three lines �ij , �ik , and �jk . Since Ci , Lij , Lik are all coplanar, an invariant exists in
the image using Ai , �ij , and �ik . The same is true for craters Cj and Ck .

We may show that such an invariant exists by use of a cross ratio, and this invariant
may be computed directly by use of a Cayley-Klein metric. The usual cross-ratio
applies to four points on a line. However, by the duality of points and lines in P

2, we
can also form a cross-ratio of four lines passing through a point. Therefore, as shown
in Fig. 15, consider a conic Ai . Let the two lines �ij and �ik be described by the 3×1
vectors �ij and �ik , and let these two lines intersect at the point p̄ = �ij × �ik . Using
the pole-polar relation for a conic, we may find the two lines from p̄ that are tangent
to the conic Ai , which we call w1 and w2. Since these four lines go through the point
p̄, we may form a cross ratio that is a projective invariant

Cr
(
�ij ,w1,w2, �ik

)
(88)

We can now form a classical Cayley-Klein metric as

d(�ij , �ik) = 1

2
ln
[
Cr

(
�ij ,w1,w2, �ik

)]
(89)

which, from hyperbolic geometry, is known to be equivalent to

αi = cosh
[
d(�ij , �ik)

] = ‖�T
ijA

∗
i �ik‖√(

�T
ijA

∗
i �ij

) (
�T
ikA

∗
i �ik

) (90)
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Fig. 15 Visualization of contributing components to invariant for a conic Ai and two lines �ij and �jk . The
lines w1 and w2 pass through p and are tangent to Ai . The line m is the polar of point p̄ with respect to Ai

where the adjugate matrix A∗
i describes the conic envelope of Ai . To understand the

need for the absolute value in the numerator, recall from Section 4 that �ij and −�ij

describe the same line (same for �ik and −�ik). Likewise, A∗
i and −A∗

i describe the
same conic envelope. Thus, since the appropriate choice of sign is not always clear
a priori, the absolute value in the numerator is a simple way to robustly remove the
sign ambiguity and ensure that cosh

[
d(�ij , �ik)

] ≥ 1 for all d(�ij , �ik). Absolute
values are not necessary in the denominator since this is quadratic in �ij , �ik , and A∗

i .
We may also write, therefore,

α2
i = cosh2 [d(�ij , �ik)

] =
(
�T
ijA

∗
i �ik

)2

(
�T
ijA

∗
i �ij

) (
�T
ikA

∗
i �ik

) (91)

Since the cross ratio from Eq. 88 is a projective invariant, it follows immediately that
the Cayley-Klein metric from Eq. 89 and its hyperbolic cosine in Eqs. 90 and 91 are
also projective invariants.

At first, the Cayley-Klein development may seem of purely academic interest.
However, it is of critical importance when building a searchable index for lunar crater
identification. It is only through this relation that we fully understand why the metric
for α2

i from Eq. 91 (the typical invariant found in the literature for a coplanar set of
a conic and two lines [123]) loses descriptiveness for small distances d(�ij , �ik). The
spacecraft navigator will immediately see that this is analogous to how small inter-
star angles θ lose descriptiveness when cataloged as cos θ instead of by θ (i.e., we
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need to tighten the matching tolerance as θ → 0 when using a cos θ index). Thus,
we prefer to index on d instead of α2.

We usually choose to only consider craters that do not physically intersect (i.e.
do not overlap), since many CDAs have difficulty providing high-quality crater rim
fits for intersecting craters. Moreover, if restrict ourselves to only non-overlapping
craters, then we are guaranteed that the cross ratio is positive. This implies that d ≥ 0
and is real, and that the denominator on the right-hand side of Eq. 90 is also real.
Since d ≥ 0, we know that

d = arcosh αi = ln

[
αi +

√
α2

i − 1

]
(92)

Therefore, we may relate the cross-ratio, the Cayley-Klein metric (�ij , �ik), and the
invariant αi according to

ln

[
αi +

√
α2

i − 1

]
= d(�ij , �ik) = 1

2
ln
[
Cr

(
�ij ,w1,w2, �ik

)]
(93)

where we choose to construct the invariant to index with the Cayley-Klein metric,

Ji = d(�ij , �ik) = acosh

⎧⎪⎪⎨
⎪⎪⎩

‖�T
ijA

∗
i �ik‖√(

�T
ijA

∗
i �ij

) (
�T
ikA

∗
i �ik

)

⎫⎪⎪⎬
⎪⎪⎭

(94)

An identical procedure produces corresponding invariants for craters j and k

Jj = d(�ij , �jk) = acosh

⎧⎪⎪⎨
⎪⎪⎩

‖�T
ijA

∗
j�jk‖√(

�T
ijA

∗
j�ij

) (
�T
jkA

∗
j�jk

)

⎫⎪⎪⎬
⎪⎪⎭

(95)

Jk = d(�ik, �jk) = acosh

⎧⎪⎪⎨
⎪⎪⎩

‖�T
ikA

∗
k�jk‖√(

�T
ikA

∗
k�ik

) (
�T
jkA

∗
k�jk

)

⎫⎪⎪⎬
⎪⎪⎭

(96)

We know from our review of the literature that many previous attempts at crater
identification have accidentally employed feature descriptors with elements that are
not independent. Thus, before proceeding further, it is necessary to ensure that the
invariants Ji , Jj , and Jk are independent. Since we know from Section 5.5 that a d-
tuple of conics on a quadric surface has 3d −6 invariants (leading to 9-6=3 invariants
for this case), it follows that if the three invariants Ji , Jj , and Jk are independent
then we have found all the algebraically independent invariants that exist. This is now
shown.
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We observe that the invariants α2
i , α

2
j , α

2
k (and hence also αi, αj , αk and Ji , Jj , Jk)

are algebraically independent. We calculate these invariants for a particular model,
since it suffices to show that the invariants are independent when restricted to special
subclasses of models. We assume that the lunar surface is the sphere x2+y2+z2 = 1,
and that the three craters are the circles defined by intersecting the sphere with the
planes given by x = t1, y = t2 and z = t3 respectively. Within the plane z = t3 we
have the crater given by x2 + y2 = 1 − t2

3 and the lines x = t1 and y = t2. So we get

A3 =
⎡
⎣1 0 0

0 1 0
0 0 t2

3 − 1

⎤
⎦ and A∗

3 =
⎡
⎣t2

3 − 1 0 0
0 t2

3 − 1 0
0 0 1

⎤
⎦ (97)

�13 =
⎡
⎣ 1

0
−t1

⎤
⎦ and �23 =

⎡
⎣ 0

1
−t2

⎤
⎦ (98)

Thus, we may compute α2
3

α2
3 = (�13A∗

3�23)
2

(�T
12A

∗
3�12)(�

T
13A

∗
3�13)

= t2
1 t2

2

(t2
1 + t2

3 − 1)(t2
2 + t2

3 − 1)
(99)

and, by symmetry, we also find

α2
2 = t2

1 t2
3

(t2
1 + t2

2 − 1)(t2
2 + t2

3 − 1)
(100)

α2
1 = t2

2 t2
3

(t2
1 + t2

2 − 1)(t2
1 + t2

3 − 1)
(101)

It is possible to verify that the Jacobi matrix

J (α2
1, α2

2, α2
3) =

(∂α2
i

∂tj

)
1≤i,j≤3

(102)

is invertible for some choice of t1, t2, t3 (e.g., t1 = t2 = t3 = 1/2). This implies that
α2

1, α2
2, α2

3 (and, therefore, Ji, Jj , Jk) are algebraically independent [75].
Despite the rather long development up to this point, the practical implementa-

tion of this method for computing the invariants Ji, Jj , Jk is straightforward and is
summarized in Algorithm 1. The reader should note that the invariants Ji, Jj , Jk are
computed directly from the measured image conics A1,A2,A3 without requiring any
knowledge of the camera position or orientation. This permits lost-in-space crater
identification.
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The utility of this framework is now briefly demonstrated. Consider a regional
crater pattern such as the one shown in Fig. 16, where there is notable curvature of the
Moon. This example has about 18.1 deg between the surface normal of crater Aj and
Ak , thus necessitating the consideration of non-coplanar invariants. Two substantially
different views of the same crater pattern are shown. The image on the left is nearly
nadir pointing and the image on the right is pointed over 30 deg off nadir. As can
be seen, the non-coplanar invariants J1, J2, and J3 are identical in both images since

Fig. 16 Example of invariants Ji , Jj , and Jk (blue) for the same triad of craters (Ai , Aj , and Ak) seen
from two different vantage points. The invariants remain unchanged under perspective projection from any
viewing geometry. The triangle interior angles (yellow) are not a projective invariant. Synthetic images
of the lunar surface were produced using PANGU Planet Surface Simulation Software developed by the
Space Technology Centre at the University of Dundee, Scotland [111]
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they are formal projective invariants. This makes evident the power of such invariants
for crater pattern recognition.

It should be stressed that only specific items in Fig. 16 are coplanar, with the vast
majority of items being non-coplanar. Consequently general combinations of lines
or crater ellipses from left image cannot be transformed to the right image with a
common homography.

Also shown in Fig. 16 are the crater triad interior angles (yellow). We highlight
these here because crater triangle interior angles are often proposed as descriptors for
lost-in-space crater pattern recognition, e.g. [49]. It is clear, however, that the interior
angles are not projective invariants and do not provide a robust means of pattern
indexing if off-nadir viewing is possible.

6.2 Geometry of Invariants for Coplanar Conics

When viewing only a very small portion of the lunar surface, the observed craters are
often nearly coplanar. Smaller craters are also more elliptical. Thus, patterns of small
craters close to one another are better described using a triad of coplanar craters.
Here, we revisit the problem of invariants of two and three coplanar conics using the
framework of Semple and Kneebone and [128] and of Quan [115, 116]

6.2.1 Pairs of Coplanar Conics

A pair of coplanar conics has two projective invariants [41]. We saw in Section 6.1.1
that two arbitrarily placed 3D conics have no intersections and in Section 6.1.2
that two 3D conics on a nondegenerate quadric surface have two intersections. We
observe now that two coplanar conics always have four intersections. These four
intersection points (possibly over the complex numbers, possibly repeated) persist
under the action of a projective camera, which permits easy computation of two
invariants.

Four specified points on a conic may be used to construct a cross-ratio, which is
a projective invariant. It may initially be unclear why this is the case since the four
points around the ellipse are not collinear, thus a brief explanation is warranted. As
discussed earlier, using the duality of points and lines in P

2, we can also form a
projective invariant by the cross-ratio of four lines passing through a point. Chasles’
theorem [128] states that the cross-ratio is a constant for the pencil of four lines from
four points on a conic to a fifth point also on the conic (Fig. 17). Therefore, we may
directly form two invariants: the first by finding the cross ratio of the lines from the
four intersection points to any other point on first conic, and the second by finding
the cross ratio of the lines from the same four intersection points to any other point
on the second conic.

Therefore, let {āk}4
k=1 = Ai∩Aj be the four intersection points of the conics in the

image plane and let p̄ be an arbitrary point on conic Ai . Since the points are written
in homogeneous coordinates, we may form the line joining p̄ and āk as wk = p̄× āk .
Thus, the cross ratio Cr (w1,w2,w3,w4) for ellipse Ai is a projective invariant, and
is the same for any choice of p on the ellipse. A second invariant may be computed
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Fig. 17 Chasles’ theorem states that the cross-ratio formed by the family of red lines is the same as the
cross-ratio of the family of blue lines

in exactly the same way by picking an arbitrary point on ellipse Aj . This cross-ratio
may also be rewritten in terms of the eigenvalues of the matrix A−1

i Aj [87].
Explicit computation of these cross ratios is not efficient, so an alternate technique

is more appropriate—though the two alternate invariants are rational functions of the
cross ratios.

A more conveniently computable form of the invariants for a pair of coplanar
conics may be found by direct analysis of the matrices Ai and Aj describing the
image conics. To see this, consider the pencil of conics λAi + μAj parameterized
by the scalars λ and μ. Recall now that 3D crater Ci projects to image ellipse Ai

according to the homography from Eq. 58. Since the craters are assumed coplanar
their appearance in an image is related by a common homography,

HT
C

(
λAi + μAj

)
HC = siλCi + sjμCj (103)

Taking the determinant yields

|HC |2 ∣∣λAi + μAj

∣∣ = |siλCi + sjμCj | (104)

which may be expanded as

|HC |2 | ∣∣λAi + μAj

∣∣ = |HC |2
(
Θ1λ

3 + Θ2λ
2μ + Θ3λμ2 + Θ4μ

3
)

= Θ ′
1λ

3 + Θ ′
2λ

2μ + Θ ′
3λμ2 + Θ ′

4μ
3 (105)

= |siλCi + sjμCj |

Thus we find that

|HC |2Θ1 = Θ ′
1 |HC |2Θ4 = Θ ′

4 (106)

|HC |2Θ2 = Θ ′
2 |HC |2Θ3 = Θ ′

3 (107)
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The coefficients Θ1, Θ2, Θ3, Θ4 are only semi-invariants since their numerical value
changes with |HC | and the arbitrary choices of si and sj . These may easily be turned
into rational invariants by considering appropriate ratios. To see this, first express
the coefficients in terms of Ai and Aj ,

Θ1 = |Ai | Θ4 = ∣∣Aj

∣∣ (108)

Θ2 = Tr
[
A∗

i Aj

] = |Ai | Tr
[
A−1

i Aj

]
= Θ1 Tr

[
A−1

i Aj

]
(109)

Θ3 = Tr
[
A∗

jAi

]
= ∣∣Aj

∣∣ Tr
[
A−1

j Ai

]
= Θ4 Tr

[
A−1

j Ai

]
(110)

Likewise, we find that

Θ ′
1 = s3

i |Ci | Θ ′
4 = s3

j

∣∣Cj

∣∣ (111)

Θ ′
2 = sj

si
Θ ′

1 Tr
[
C−1

i Cj

]
(112)

Θ ′
3 = si

sj
Θ ′

4 Tr
[
C−1

j Ci

]
(113)

As shown in [128], the simplest pair of independent rational invariants are

Θ1Θ3

Θ2
2

= Θ ′
1Θ

′
3

Θ ′
2

2
and

Θ2Θ4

Θ2
3

= Θ ′
2Θ

′
4

Θ ′
3

2
(114)

which we quickly verify produce a pair of non-trivial scalars that are not dependent
on HC , si , or sj (hence, they are the two fully generic invariants for a pair of conics):

|Aj |
|Ai |

Tr
[
A−1

j Ai

]
(

Tr
[
A−1

i Aj

])2
= Θ1Θ3

Θ2
2

= Θ ′
1Θ

′
3

Θ ′
2

2
= |Cj |

|Ci |
Tr
[
C−1

j Ci

]
(

Tr
[
C−1

i Cj

])2
(115)

|Ai |
|Aj |

Tr
[
A−1

i Aj

]
(

Tr
[
A−1

j Ai

])2
= Θ2Θ4

Θ2
3

= Θ ′
2Θ

′
4

Θ ′
3

2
= |Ci |

|Cj |
Tr
[
C−1

i Cj

]
(

Tr
[
C−1

j Ci

])2
(116)

Since the left-hand side of these expressions are independent of HC , the same value
is computed for any arbitrary projection of the conics Ci and Cj . These results are in
agreement with [115], which also follows [128].

Following the convention of [41], we now observe that the equations simplify con-
siderably by choosing the scale such that |Ai | = |Aj | = 1, making the coefficients
Θ1 and Θ4 trivial. Using this simplification, substitute (108) and (111) into Eq. 106
to find

|H|2 = s3
i = s3

j (117)
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which, in turn, leads to

Θ2 = Θ ′
2 → Tr

[
A−1

i Aj

]
= Tr

[
C−1

i Cj

]
(118)

Θ3 = Θ ′
3 → Tr

[
A−1

j Ai

]
= Tr

[
C−1

j Ci

]
(119)

Therefore, when conics are pre-scaled to |Ai | = |Aj | = 1, the two unique
invariants are simply

Iij = Θ2 = Tr
[
A−1

i Aj

]
(120)

Iji = Θ3 = Tr
[
A−1

j Ai

]
(121)

We note that [41] follows a completely different approach to finding Iij and Iji ,
and even more geometrically-inspired derivations may be found in [96]. The specific
approach shown here is chosen because of its extensibility to finding invariants of
three or more coplanar conics.

These two invariants for a pair of coplanar conics were used by Cheng, et al., for
crater identification in [18, 20]. We find, however, that better performance is often
achieved by considering a triad of craters.

6.2.2 Triads of Coplanar Conics

It is established in Section 5.2 that there exist 5d − 8 projective invariants for a d-
tuple of coplanar conics (d ≥ 2). Thus, for a triad of coplanar conics, there exists
15 − 8 = 7 projective invariants. This fact has been known for some time [53, 116].

The procedure for finding these seven invariants follows the same framework used
for a pair of coplanar conics. Therefore, consider the determinant of a net of three
conics [128]. As observed in [116], this evaluates to

|λAi + μAj + σAk| = Θ1λ
3 + Θ2λ

2μ + Θ3λμ2 + Θ4μ
3 + Θ5λ

2σ (122)

+Θ6λσ 2 + Θ7σ
3 + Θ8μ

2σ + Θ9μσ 2 + Θ10λμσ

We immediately see that the coefficients of the first nine terms correspond to the
pair-wise combinations of the three conics, with results that follow directly from the
two-conic case

Θ1 = |Ai | , Θ4 = ∣∣Aj

∣∣ , Θ7 = |Ak| (123)

and that

Θ2 = Θ1 Tr
[
A−1

i Aj

]
, Θ3 = Θ4 Tr

[
A−1

j Ai

]
(124)

Θ5 = Θ1 Tr
[
A−1

i Ak

]
, Θ6 = Θ7 Tr

[
A−1

k Ai

]
(125)

Θ8 = Θ4 Tr
[
A−1

j Ak

]
, Θ9 = Θ7 Tr

[
A−1

k Aj

]
(126)
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Note that Θ10 is the only coefficient that simultaneously depends on all three of the
conics, thus making it the only term unique to a triad (and not to a pair). This may be
computed as

Θ10 = 1

2
Tr
{[(

Aj + Ak

)∗ − (
Aj − Ak

)∗]Ai

}
(127)

where the reader is briefly reminded that A∗ is the adjugate of A. Computation of
this result (which, interestingly, does not appear in [116], [53], or any other reference
discussing triads of coplanar conics) is tedious but straightforward, and is left as an
exercise to the reader.

The ten coefficients of Eq. 122 may be used to define the seven unique invariants.
As with the pair of coplanar conics, the simplest approach is to choose the arbitrary
scale of the matrices Ai , Aj , and Ak such that |Ai | = |Aj | = |Ak| = 1. Thus the
coefficients Θ1, Θ4, and Θ7 become trivial, and the remaining seven coefficients
become the unique invariants. That is, with |Ai | = |Aj | = |Ak| = 1, we find that

Iij = Tr
[
A−1

i Aj

]
Iji = Tr

[
A−1

j Ai

]
(128)

Iik = Tr
[
A−1

i Ak

]
Iki = Tr

[
A−1

k Ai

]
(129)

Ijk = Tr
[
A−1

j Ak

]
Ikj = Tr

[
A−1

k Aj

]
(130)

Iijk = Tr
{[(

Aj + Ak

)∗ − (
Aj − Ak

)∗]Ai

}
(131)

Therefore, if three coplanar craters Ci , Cj , and Ck project into three image conics Ai ,
Aj , and Ak (described by the matrices Ai , Aj , and Ak), then the seven scalar values in
Eqs. 128 to 131 will remain exactly the same under perspective projection regardless
of the camera position and attitude.

7 Creating a Crater Pattern Descriptor from Invariants

Having identified projective invariants that may be computed from the observed
crater rim geometry in an image (three for a triad of non-coplanar conics on a
quadric surface and seven for a triad of coplanar conics), we wish to use this infor-
mation to construct a pattern descriptor. This descriptor must have a structure that
can be consistently reproduced to allow for matching against a static index, which
requires some care since the invariants from Section 6 depend on the ordering of the
observed craters. We note that the sensitivity of invariants to ordering is not inher-
ently a bad thing (after all, we must specifically match each individual crater to the
catalog)—though it does result in a few different methods for building descriptors.

The index is built using descriptors for crater triads. We must choose, therefore,
whether we want to impose ordering of the three craters within the triad before or
after matching to the index. If we choose the former, then the invariants developed
before may be used directly. If we choose the latter, we must either sort the projective
invariants from Section 6 into a prescribed order or transform them into projec-
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tive and permutation (p2) invariants. These conventions each have their advantages,
which we now discuss.

7.1 Crater Pattern Descriptors with Projective Invariants

Suppose we observe a triad of craters that we want to match to a precomputed index
in an order-dependent fashion. Since the crater pattern must be observed from above
(i.e., the camera must be looking downwards from above the lunar surface because
it cannot be inside the Moon), there are three possible orderings of the craters. If we
choose to arrange these in a clockwise fashion within the image (see Fig. 18) then the
three possibilities are (1, 2, 3), (3, 1, 2), and (2, 3, 1). For a match to be successful,
the observed descriptor must match the index descriptor. Therefore, if the descriptor
entries are order dependent, then a match only occurs when the observation ordering
matches index ordering.

There are at least two options for matching to an index with order-dependent
descriptors. First, if each crater triad has a single index entry, the index must be
searched three times (once with each possible observation ordering). Alternatively,
the index could include three entries for each crater triad (one for each ordering)
and the larger index is searched only once. The first method (one index per triad)
performs best in the presence of measurement noise.

The pattern descriptors in this scenario are simply a concatenation of the invariants
from Section 6. Thus, for a triad of conics on a quadric surface, we build a three-
element descriptor:

JT
ijk = [

Ji Jj Jk

]
(132)

where the individual elements are from Eqs. 94 to 96.
Likewise, for a triad of conics on a plane, we build a seven-element descriptor:

ITijk = [
Iij Ijk Iki Iji Ikj Iik Iijk

]
(133)

where the individual elements are from Eqs. 128 to 131.

7.2 Crater Pattern Descriptors with Sorted Projective Invariants

As before, suppose we observe a triad of craters. Now, instead of having an order-
dependent descriptor, suppose that we want to match to a precomputed index in

Fig. 18 Crater triad labels in an image are assigned in a clockwise fashion. There are three possible
permutations of these labels, which may be interpreted as a cyclic permutation of the labels
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an order-independent fashion. There are a variety of approaches one might use to
achieve this objective. We will see, however, that some care is required to arrive at a
robust solution.

A very common technique for achieving permutation invariance is to always per-
mute the order of the descriptor elements such the smallest (or largest) element
appears first. For example, one possible descriptor is J ′T

ijk = [J ′
i , J

′
j , J

′
k], where J ′

i ≤
J ′

j ≤ J ′
k is a rearrangement of (Ji, Jj , Jk), i.e., we sort the numbers Ji, Jj , Jk from

small to large and let the result be the descriptor. This arrangement was employed by
Hanak [49, 50] to define the clockwise/counterclockwise sense of a crater pattern by
ordering the legs of the crater triangle from shortest to longest. Similarly, for their
lost-in-space algorithm, Maass, et al., [86] presort the entries in their index of crater
triangles (which consists of two triangle interior angles) such that the smallest inte-
rior angle is first. Other examples of this idea abound within the space navigation
community, ranging from crater pattern identification to star pattern identification.

Returning to the problem at hand, we know from our labeling convention that the
crater pattern indices may only undergo a cyclic permutation. Thus, we may cyclically
permute the entries until smallest valued invariant is in the first position—that is,
where (J ′

i , J
′
j , J

′
k) is a cyclic permutation of (Ji, Jj , Jk) with J ′

i = min(Ji, Jj , Jk).
Thus, for a triad of conics on a quadric surface, we build a three-element

descriptor:

JT
ijk = [

J ′
i J ′

j J ′
k

]
(134)

where we label observed crater i such that J ′
i = min(Ji, Jj , Jk) and the rest of the

primed invariants follow by cyclic permutation. The individual elements are from
Eqs. 94 to 96.

Likewise, for a triad of conics on a plane, we build a seven-element descriptor:

ITijk = [
I ′
ij I ′

jk I ′
ki I ′

ji I ′
kj I ′

ik I ′
ijk

]
(135)

where we label observed crater i such that I ′
ij = min(Iij , Ijk, Iki) and the rest of

the primed invariants follow by cyclic permutation of the crater labels i, j, k (and,
to be clear, not by cyclic permutation of the elements of the descriptor vector). The
individual elements are from Eqs. 128 to 131.

The usual argument for anchoring the descriptor element ordering with the small-
est (or largest) element is that it is simple. We find in practice, however, that this
ordering scheme is not optimally descriptive and is not very robust to noise. Indeed,
it is not uncommon for noise to cause two similarly-valued invariants to switch posi-
tion. If this happens to the value used to anchor the descriptor permutation then
it renders the entire descriptor useless—even though the invariants themselves still
describe the crater pattern well. Thus, we cycle through the sorted projective invariant
descriptors exactly as we do for the unsorted case (Section 7.1). However, the pre-
sorting works most of the time, and greatly reduces the trials required (on average)
to find a match.
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The main problem with this approach is how sorting populates the k-d search
space. By sorting the descriptor to have the smallest element first, we preferentially
populate the search space for smaller values along this dimension. This doesn’t mat-
ter so long as the measurement noise is very small—but, when supplied with noisy
measurements, this reduces the likelihood that the correct descriptor will correspond
with the first nearest neighbor. The end result is that an index of sorted descriptors
will yield fewer matches (as compared with Section 7.1) when the data is noisy. Thus,
while it may provide speed-up for low noise cases, both matching performance and
speed quickly degrade as noise increases.

7.3 Crater Pattern Descriptors with Projective and Permutation (p2) Invariants

Our objective is to construct a descriptor that is invariant to the order in which the
craters are observed. It should be no surprise, therefore, that invariant theory is (once
again) a useful mathematical framework for achieving this objective. There is some
precedence for this approach using the so-called projective and permutation (p2)
invariants. The p2 invariants are discussed for a set of five points in [76] and for a
pair of conics in [87]. An attempt was made to apply this to the problem of crater
identification in [110], though this approach suffered from a number of mistakes
(see Section 3.3). Within the context of this past work, we now introduce the first
complete set of p2 invariants for a triad of conics on a quadric surface or on a plane
(e.g., p2 invariants for a triad crater rims on the Moon).

We briefly remind the reader that the p2 invariants introduced here are algebraic
functions of the projective invariants from Section 6. Thus, the p2 invariants do not
represent any new (independent) information. They simply express the information
we already have in a different way.

7.3.1 Non-Coplanar Crater Patterns (Three-Element Descriptor)

We first develop the p2 invariants for a triad of conics lying on a quadric surface.
We know there exists exactly three algebraically independent invariants for this case,
and we are able to compute three such invariants Ji, Jj , Jk directly from an image
using Eqs. 94 to 96. Our goal is to compute rational functions of Ji, Jj , Jk that are
invariant to a cyclic permutation of the crater labels.

Consider, therefore, the triple of numbers {x, y, z}. The standard generators of
the ring of polynomial invariants for the symmetric group, S3, of all coordinate
permutations are the elementary symmetric functions (see [103, Chapter 4])

e1 = x + y + z (136)

e2 = xy + yz + zx (137)

e3 = xyz (138)

which are clearly invariant to permutations of {x, y, z}. To obtain the generators of the
invariant ring for the cyclic group Z/3Z, which we may also view as the alternating
group A3, we require one more invariant:

Δ = (x − y)(y − z)(z − x) (139)
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(see for example [103, Example 4.24]). We observe that Δ is invariant under cyclic
permutations, but that odd permutations change its sign. While these polynomials
could certainly be used to construct p2 invariants and build a pattern descriptor, we
note that the polynomials are of different degree which often leads to undesirable
numerical properties for indexing. Thus, we instead look for three rational functions,
where the difference in the degrees of the numerator and denominator are the same
for all three functions.

To do this, we begin by defining a polynomial map

F(x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)) (140)

where F1, F2, F3 are continuous rational functions with the property that
F(x, y, z) = F(x′, y′, z′) if and only if (x′, y′, z′) is a cyclic permutation of (x, y, z).
Let the cyclic group Z/3Z act on R

3 by permuting the coordinates. Then we desire
F1, F2, F3 to be invariant functions on R

3.
Whenever a finite group acts by a linear transformation, there exists a particular

coordinate change where the action of the group becomes diagonal. That is, in some
coordinate system, the matrix describing the action of each group element is a diago-
nal matrix. This follows from two facts from the representation theory of finite groups
(see [42, Chapter 1]). First, every representation of a finite group is a direct sum
of irreducible representations. Second, every irreducible representation of a finite
abelian group is 1-dimensional. For the specific problem under consideration here
(the action of Z/3Z on R

3), we can make this very explicit: namely, the change of
coordinates making the action diagonal is a discrete Fourier transform (DFT) (which
involves complex numbers). To make these ideas explicit, let a, b, c be

a = x + y + z (141)

b = x + ζy + ζ 2z (142)

c = x + ζ 2y + ζz (143)

where ζ = e2πi/3 = −−1+√
3i

2 . Then the generator σ of Z/3Z acts by the diagonal
matrix ⎡

⎣ 1 0 0
0 ζ 0
0 0 ζ 2

⎤
⎦

We define F1, F2, and F3 as rational functions of a, b, c,

F1(x, y, z) = a = x + y + z (144)

F2(x, y, z) = b2

c
+ c2

b
(145)

= 2(x3 +y3 +z3) + 12xyz − 3(x2y + y2x + y2z + z2y + z2x + x2z)

x2 + y2 + z2 − (xy + yz + zx)

F3(x, y, z) = 1

i

(
b2

c
− c2

b

)
(146)

= −3
√

3(x − y)(y − z)(z − x)

x2 + y2 + z2 − (xy + yz + zx)
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The denominator of F2 and F3 is equal to 1
2 [(x − y)2 + (y − z)2 + (z − x)2] and is

equal to 0 if and only if x = y = z. We can also verify that

F 2
2 + F 2

3 = 2[(x − y)2 + (y − z)2 + (z − x)2] = 2bc

This implies that if (x, y, z) is a sequence that converges to a point (t, t, t), then
F2(x, y, z) and F3(x, y, z) converge to 0. Consequently, we can extend F2 and F3 to
continuous functions on all of R3 by defining them to be 0 whenever x = y = z.

Lemma 1 F(x, y, z) = F(x ′, y′, z′) if and only if (x′, y′, z′) is a cyclic permutation
of (x, y, z) for all (x, y, z), (x′, y′, z′) ∈ R

3.

Proof Suppose now that F(x, y, z) = F(x′, y′, z′). Let a, b, c be as given in
Eqs. 144–146 and define similarly a′ = x′ + y′ + z′, etc. To begin, observe that if
F2(x, y, z) = F2(x

′, y′, z′) = F3(x, y, z) = F3(x
′, y′, z′) = 0 then we must have

x = y = z and x′ = y′ = z′ and from F1(x, y, z) = 3x = 3x′ = F1(x
′, y′, z′)

it follows that (x, y, z) = (x′, y′, z′). Now suppose that F2(x, y, z)2 + F3(x, y, z)2

(and, therefore, F2(x
′, y′, z′)2 + F3(x

′, y′, z′)2) is nonzero. Then b, b′, c, c′ are all
nonzero. Since F2(x, y, z) = F2(x

′, y′, z′) and F3(x, y, z) = F3(x
′, y′, z′) we get

b2

c
= F2(x, y, z) + iF3(x, y, z)

2
= F2(x

′, y′, z′) + iF3(x
′, y′, z′)

2
= (b′)2

c′

and

2bc = F2(x, y, z)2 + F3(x, y, z)2 = F2(x
′, y′, z′)2 + F3(x

′, y′, z′)2 = 2b′c′.

This implies that

b3 = b2

c
(bc) = (b′)2

c′ b′c′ = (b′)3.

Therefore b′ = ζ sb for some s ∈ {0, 1, 2}. Taking complex conjugation, we get that
c′ = ζ−sc. We conclude that (a, b, c) and (a′, b′, c′) lie in the same orbit Z/3Z,
which means that (x ′, y′, z′) is a permutation of (x, y, z).

One can also verify that the field of rational invariants R(x, y, z)Z/3Z is generated
by F1, F2, F3.

7.3.2 Coplanar Crater Patterns (Seven-Element Descriptor)

The development of p2 invariants for a triad of conics lying on a plane follows
similar arguments as for conics on a quadric, though it requires more care due to
additional relationships between the seven elements in the descriptor. Therefore,
recall from Eqs. 128–131 that the seven invariants consists of three invariant pairs,
(Iij , Iji), (Ijk, Ikj ), (Iki , Iik), and a 7th invariant for the entire triad Iijk . Because
they’re constructed from a common set of crater observations, the two invariants
within any given pair always undergo a common permutation. We also observe that
Iijk is already symmetric and invariant to the ellipse label order.
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Simply by applying the results of the previous section, we can find six Z/3Z-
invariant functions from F�(Iij , Ijk, Iki) and F�(Iji , Ikj , Iik). The descriptiveness of
these six invariants, however, is not optimal because members of a common pair
are not forced to undergo the same permutation. Therefore, we introduce two new
invariants.

Again making use of a DFT, define a�, b�, c� as

a� = x� + y� + z� (147)

b� = x� + ζy� + ζ 2z� (148)

c� = x� + ζ 2y� + ζz� (149)

for � = 1, 2. Note that c� = b� where x�, y�, z� are real. A generator of Z/3Z acts on
(x1, y1, z1) and (x2, y2, z2) by the same cyclic permutation of coordinates, and it acts
on b1, b2 with a scalar ζ and on c1, c2 with a scalar ζ 2. We see, therefore, that b1c2
is invariant. We define G1(x1, y1, z1, x2, y2, z2) and G2(x1, y1, z1, x2, y2, z2) be the
real and imaginary part of b1c2, which we compute as

b1c2 = (x1 + ζy1 + ζ 2z1)(x2 + ζ 2y2 + ζz2) =
= (x1x2 + y1y2 + z1z2) + ζ(x1z2 + y1x2 + z1y2) + ζ 2(x1y2 + y1z2 + z1x2)

We may isolate the real part to obtain G1

G1(x1, y1, z1, x2, y2, z2) =
= (x1x2 + y1y2 + z1z2) − 1

2 (x1z2 + y1x2 + z1y2 + x1y2 + y1z2 + z1x2)

= 3
2 (x1x2 + y1y2 + z1z2) − 1

2 (x1 + y1 + z1)(x2 + y2 + z2)

and the imaginary part to obtain G2

G2(x1, y1, z1, x2, y2, z2) =
√

3

2

[
(x1z2 + y1x2 + z1y2) − (x1y2 + y1z2 + z1x2)

]

= −
√

3

2

∣∣∣∣∣∣
1 1 1
x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣
Lemma 2 Suppose that x�, y�, z�, x

′
�, y

′
�, z

′
� ∈ R for � = 1, 2 such that

F(x1, y1, z1) = F(x′
1, y

′
1, z

′
1)

F (x2, y2, z2) = F(x′
2, y

′
2, z

′
2)

G(x1, y1, z1, x2, y2, z2) = G(x′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2)

Then

(x1, x2), (y1, y2), (z1, z2)

is a cyclic permutation of

(x′
1, x

′
2), (y

′
1, y

′
2), (z

′
1, z

′
2)
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Proof By Lemma 1 we know that (x′
1, y

′
1, z

′
1) is a cyclic permutation of (x1, y1, z1)

and (x′
2, y

′
2, z

′
2) is a cyclic permutation of (x2, y2, z2), i.e., b′

1 = ζ sb1 and b′
2 = ζ tb2

for some s, t ∈ {0, 1, 2}. It is not yet clear that this is the same permutation, i.e.,
whether s = t . From G(x1, y1, z1, x2, y2, z2) = G(x′

1, y
′
1, z

′
1, x

′
2, y

′
2, z

′
2) follows that

b1b2 = b1c2 = b′
1c

′
2 = b′

1b
′
2. On the other hand, b1b2 = b′

1b
′
2 = (ζ sb1)(ζ

−t b2) =
ζ s−t b1b2. So either b1 = 0, b2 = 0, or s = t . If t = s, then we are done. If b1 = 0
then x1 = y1 = z1 = x′

1 = y′
1 = z′

1 and we are also done because (x′
2, y

′
2, z

′
2) is a

cyclic permutation of (x2, y2, z2). The case b2 = 0 goes similarly.

It follows, therefore, that there are many approaches to choose a descriptor for
a set of three coplanar craters. We summarize three obvious choices, with the third
being the one we usually recommend.

The most obvious approach is to form a seven-element descriptor as

[F(Iij , Ijk, Iki), F (Iji , Ikj , Iik), Iijk]
As was noted above, the descriptiveness of such a scheme is not optimal, because this
descriptor remains the same when the values of Iij , Ijk, Iki cyclically rotate while
the values of Iji , Ikj , Iik stay the same. This means that 3 different configurations
might have the same descriptor.

A second option is to form a nine-element descriptor

[F(Iij , Ijk, Iki), F (Iji , Ikj , Iik), G̃(Iij , Ijk, Iki , Iji , Ikj , Iik), Iijk]
This descriptor is more descriptive but uses more space. Here, we have replaced the
invariant G with G̃, which we define as

G̃(x1, y1, z1, x2, y2, z2) =
G(x1, y1, z1, x2, y2, z2)

4

√(
(x1 − y1)2 + (y1 −z1)2 + (z1 − x1)2

)(
(x2 − y2)2 + (y2 − z2)2 + (z2 − x2)2

)

This is an essential step, since G scales quadratically with (x1, y1, z1, x2, y2, z2)

while F scales linearly. Using G instead of G̃ results in a poorly scaled descriptor
that complicates (and sometimes precludes) nearest neighbor searches with efficient
data structures. Conversely, the function G̃ scales linearly. We note that G̃ is not a
rational function because of the 4-th root, but it does extend to a continuous function
on R

6 by defining the function to be 0 whenever x1 = y1 = z1 or x2 = y2 = z2.
A third option (and the one we suggest) is to use the seven-element descriptor

[F(Iij , Ijk, Iki), F1(Iji , Ikj , Iik), G̃(Iij , Ijk, Iki , Iji , Ikj , Iik), Iijk]
For generic configurations, this descriptor is as good as the nine-element descrip-
tor. The subfield of L = C(x1, y1, z1, x2, y2, z2) generated by F�(x1, y1, z1),
� = 1, 2, 3, F1(x2, y2, z2) and G�(x1, y1, z1, x2, y2, z2), for � = 1, 2 is equal to
K = C(a1, a2, b

3
1, b1c1, b1c2, c1b2). We observe that L = K(b1) and b1 has degree

three over K . So the degree of the field extension L/K is at most three, K is con-
tained in the fixed field LZ/3Z and the degree of the extension L/LZ/3Z is three. This
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implies that K = LZ/3Z. In other words, every Z/3Z-invariant rational function in
Iij , Ijk, Iki , Iji , Ikj , Iik is a rational function in the first 6 elements of the descriptor.

However, in the degenerate case Iij = Ijk = Iki = t for some fixed t we
have G(Iij , Ijk, Iki , Iji , Ikj , Iik) = 0. In that case, the descriptor cannot distinguish
between different configurations of the same pattern (e.g., a pattern and it’s mir-
ror). This is to be expected, since the degenerate case corresponds to equally sized
craters around an equilateral triangle. Here, while there may be enough information
to uniquely identify the triad (i.e., match the triad descriptor to the database), there is
not sufficient information to disambiguate the specific crater labels with the projected
crater rims alone. No special action is required, since this ambiguity is naturally
handled in the pattern verification process (Section 9).

7.4 Remarks on Choosing a Descriptor Convention

In the sections above we introduce descriptors based on the projective invariants,
sorted projective invariants, and on the p2 invariants. Which one is best is often
application dependent.

Descriptors built directly on the projective invariants (Section 7.1) have better
matching performance when presented with noisy data (see left-hand plot of Fig. 19),
though they require the index be searched three times per observed pattern (one for
each possible permutation).

Conversely, the descriptors built with the sorted invariants (Section 7.2) or p2

invariants (Section 7.3) only require one index search per observed pattern, but are
more sensitive to measurement noise. As a consequence the sorted invariant and p2

invariant descriptors are faster for low noise situations, but slower for high noise
situations (see right-hand plot of Fig. 19). This may seem counter-intuitive. The
explanation, however, is straightforward. As measurement noise increases, the sorted
invariant and p2 invariant descriptors must attempt more triads (on average, as com-
pared to the projective invariant descriptor from Section 7.1) before finding a correct
nearest neighbor match. Thus, with large amounts of measurement noise, the projec-
tive invariant descriptor from Section 7.1 tends to find a match sooner despite needing
three index searches per triad—and finding a match sooner results in a lower (faster)
run-time.

8 Building a Global Crater Index

Global lunar crater identification requires multi-scale indexing and careful catalog
curation. When close to the Moon, a spacecraft sees small craters that are nearly
coplanar. Conversely, when far from the Moon, a spacecraft sees larger craters dis-
tributed over the lunar sphere (not coplanar). This immediately suggests at least two
crater indexes be built—one for small patterns of nearly coplanar craters and another
for larger patterns of non-coplanar craters. In practice, we find that the most efficient
real-time performance is achieved by creating a single index for the planar case and
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Fig. 19 A comparison of crater matching performance and execution speed for 1,000 random images of
the Moon. These images correspond to a spacecraft at 600 km altitude placed randomly around the Moon
(uniform distribution over the lunar sphere). Matching is performed using the three-element (non-coplanar)
crater triad descriptor from Section 6.1.3. The left-hand plot shows the fraction of cases with a successful
match. The balance of cases returned no match, and there were no cases where an incorrect match was
returned. The right-hand plot shows execution time for the entire matching pipeline (conics as input,
verified match as output) using the three different descriptors. These times correspond to non-optimized
prototype code and should be taken to represent relative (rather than absolute) execution time

a hierarchy of indexes for the non-coplanar case. These indexes may be combined
into a single large index or kept as separate indexes. We find the latter to often be the
better choice.

The lunar crater database from Ref. [119] contains 1.3M craters over about 1–
2 km in diameter. It is immediately obvious that consideration of all the

(1.3M
3

) =
3.66 × 1017 combinations of possible crater triads is not reasonable. This further
motivates construction of a hierarchy of indexes with different scales to better man-
age the combinations of craters that could plausibly be observed at the same time.
A visualization of the local and global crater indexes used in this work is shown in
Fig. 20, where the index spaces are superimposed on the lunar crater density data
from Ref. [119].

We propose the Hierarchical Equal Area isoLatitude Pixelization (HEALPix)4

framework [45] be used to subdivide the lunar surface into equal area regions, which
we refer to as surface pixels. HEALPix was developed for subdividing the celes-
tial sphere in support of science objectives for the Wilkinson Microwave Anisotropy
Probe (WMAP) mission [10], and has since found widespread use for analysis
of data from other NASA and ESA missions [e.g., Cosmic Background Explorer
(COBE), Planck]. It is also used for managing the creation of star quadrilaterals in

4Software implementations of HEALPix in C++, FORTRAN, and Python are freely available online at
https://healpix.sourceforge.io.
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Fig. 20 Relative lunar crater density as a function of diameter and ellipticity. Areas of darker blue indicate
more craters per unit area. Overlayed boxes show regions from which craters are drawn to for the local
and global crater indexes

the present state-of-the-art for star identification, calibration, and alignment of astro-
metric images [71]. We believe our work to be the first application of HEALPix to
the management of lunar surface features.

All indexes are built using the same fundamental approach, but at different scales.
The procedure is as follows:

First, the lunar surface is tiled into Npix = 12(22k) surface pixels of equal area.
Next, a list is constructed for each pixel containing the catalog entries for craters
within a specified size range (e.g., minimum/maximum diameter) and whose catalog
fit was constructed using at least 90% of the rim’s circumference.

Second, given a list of usable craters in each HEALPix surface pixel, we loop
through all the pixels to create crater triads. At each pixel, we consider craters from
the 3 × 3 HEALPix grid centered about the reference pixel. From these 9 surface
pixels, all possible triads are formed where (1) craters do not intersect one another
and (2) the triad center lies within the reference (center) surface pixel. Valid crater
triads are arranged in a clockwise order and the scale-appropriate projective invariant
descriptors are computed. To better illustrate this, Fig. 21 shows an example 3 × 3
HEALPix grid (region of support for surface pixel 6318) overlayed on an example
Metric Camera image from Apollo 17. For further intuition, a global visualization
of the HEALPix grid and the crater density (i.e., number of craters per HEALPix
surface pixel) is shown in Fig. 22.

Third, once the triads belonging to all surface pixels have been computed, the
results are stored in an efficiently searchable data structure. The authors have found
excellent performance using either a k-d tree [11] or n-d k-vector [6], though other
reasonable choices exist. We briefly remark that the 1-d k-vector [93, 94] has seen
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Fig. 21 Example lunar crater triad belonging to HEALPix 6318. Overlay is on Apollo Metric Camera
image AS17-M-0684. (Credit for raw scans of Apollo flight film images: NASA/JSC/ASU. See [73, 121]

extensive use for star pattern matching in space applications [95, 134], and the n-d k-
vector has been proposed for space applications as well [74]. The specific choice of
data structure is not of primary concern in the present analysis so long as a reasonable
selection is made.

8.1 Indexing Local Crater Patterns with Coplanar Invariants

To construct a global index of local-scale (small) crater patterns, we choose a
HEALPix resolution of k = 5 for craters of diameter 4–30 km. This yields Npix =
12(210) = 12, 288 surface pixels, with each surface pixel having a surface area of
approximately 3, 086 km2. There are 20,737 craters with catalog parameters sup-
ported by > 90% of the crater rim circumference and having a diameter between
4 km and 30 km. Rather than producing

(20,737
3

) = 1.49 × 1012 combinations, the
HEALPix grouping strategy only produces the 4.8M crater triads that are nearly
coplanar.

The local crater patterns are assumed coplanar and craters are allowed to follow
an arbitrary elliptical shape. Thus, we construct a seven-element descriptor using an
appropriate method from Section 7.

8.2 Indexing Global Crater Patterns with Non-Coplanar Invariants

For crater patterns that are regional or global in extent, we find it helpful to construct
at least two indexes—though specific mission needs may require more or less. The
extension to a single global index or many global indexes is trivial.
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Fig. 22 Graphical depiction of the number of triads in each HEALPix surface pixel. Left column shows
orthographic projection of lunar near side, while the right column shows the same for the lunar far side

The Moon is very nearly a sphere at the global level. Therefore, because the non-
coplanar invariants require each pair of ellipses to lie on a common quadric surface,
the craters must be nearly circular. The global lunar crater databases constructed here
are built only from craters having an ellipticity of a/b ≤ 1.1. Since the global patterns
are assumed to lie on a nondegenerate quadric surface, we construct a three-element
descriptor using an appropriate method from Section 7.

The first global crater index has a HEALPix resolution of k = 3 for craters
of diameter 25–125 km. This yields Npix = 12(26) = 768 surface pixels, with
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each surface pixel having a surface area of approximately 49, 390 km2. The index
is good for matching crater patterns at the regional level. There are 904 nearly cir-
cular craters (a/b ≤ 1.1) with catalog parameters supported by > 90% of the
crater rim circumference and having a diameter between 25 km and 125 km. Rather
than producing

(904
3

) = 1.23 × 108 combinations, the HEALPix grouping strat-
egy only produces the 140,929 crater triads. The example crater triad in Fig. 16
(see Section 6.1) was recognized using this index.

The second global crater index has a HEALPix resolution of k = 1 for craters
having a diameter over 100 km. This yields Npix = 12(22) = 48 surface pixels,
with each surface pixel having a surface area of approximately 790, 300 km2. The
index is good for matching crater patterns at the global level, when nearly an entire
hemisphere is visible in an image. There are 31 nearly circular craters (a/b ≤ 1.1)
with catalog parameters supported by > 90% of the crater rim circumference and
having a diameter over 100 km. Rather than producing

(31
3

) = 4, 495 combinations,
the HEALPix grouping strategy only produces the 707 crater triads.

8.3 Remarks on the Utility of Crater Index Hierarchies

The primary purpose of having more than one index is to apply coplanar invariants
at the local scale (allowing for arbitrary elliptical crater shape) and non-coplanar
invariants at the regional/global scale (where curvature of the Moon makes craters lie
in substantially different planes).

In practice, the orbital regime is often known ahead of time (e.g., LLO, cislu-
nar), allowing us to only search crater patterns in the index of appropriate scale. If,
however, we are truly “lost-in-space” and do not know the orbital regime a priori,
we have found that all indexes may be queried and only the correct one will pro-
duce a match. Thus, the hierarchy of indexes allows us to exploit mission-specific
information when it is available, but does not necessarily require this information.

While this work builds a truly global index for both local crater patterns and global
crater patterns, it may sometimes be desirable to only include craters visible along a
reference trajectory.

9 Matching Observed Crater Patterns to a Pre-Built Index

When supplied an image of the lunar surface, the objective is to recognize a pattern of
observed craters using the image conics corresponding to the projection of the crater
rims.

This is accomplished using a straightforward matching and and verification proce-
dure. First, a crater detection algorithm (CDA) produces an ellipse fit to a crater rims
in an image. Second, we consider triads of these image conics, cycling through com-
binations using the Enhanced Pattern Shifting (EPS) method [5]. For each crater triad,
we compute the appropriate descriptor (see Section 7) and query the corresponding
pre-built index to find potential matches (e.g., best N ≥ 1 matches). For each crater
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match hypothesis, we compute the unknown camera position (see Section 9.1). After
first checking to ensure the position estimate is not inside the Moon (as would hap-
pen if we accidentally match to a pattern on the wrong side of the Moon), we then
reproject the expected crater rim locations in the image using Eq. 47. The match is
verified by comparing the observed and expected crater rims using a new distance
metric (see Section 9.2). Previous methods only compared crater centers and thus
required 4–5 correct correspondences to verify a match. Comparing the craters rims
is more informative, allowing for pattern match verification with only three craters
(thus allowing crater identification above more sparsely cratered terrain).

If a pattern match hypothesis is verified by this procedure, we declare this the solu-
tion and terminate the search. If a pattern match hypothesis is not verified we consider
another hypothesis for that triad or move to the next triad in the EPS sequence. If we
reach the end of the EPS sequence with no hypothesis being verified, we declare that
no match is possible and terminate the search.

The subsections that follow describe the mathematics for pose estimation from
corresponding non-coplanar conics and a crater rim distance metric. Both of these
algorithms are novel.

9.1 Pose from Non-Coplanar Conics in Correspondence

The usual approach for computing pose from matched craters only uses the coordi-
nates of the crater center. Here, it is essential to remember that the center of an image
ellipse does not generally produce a line-of-sight vector to the center of a 3D ellipse
(or circle). Some past crater identification pipelines consider this effect (e.g., [110]),
but many do not. Regardless, there are a variety of algorithms one may use to com-
pute pose from corresponding 2D image and 3D model points [4, 77]. Unfortunately,
however, using only the crater center points neglects the substantial amount of valu-
able navigation information contained within the shape of the projected crater rims.
We aim to address this problem here.

Were the 3D conics strictly coplanar, there are a number of algorithms one could
use to estimate pose from the projected image conics [67, 135, 141]. However, while
we assume local crater patterns are coplanar for index building/matching, there is no
reason to assume coplanarity for pose estimation or match verification. Furthermore,
we require the ability to solve this problem for both local and global patterns—
thus requiring a method for pose estimation from the projection of non-coplanar
conics.

The literature discussing pose estimation from non-coplanar conics is limited. The
most common approach is to look at a pair of ellipses in an image and construct a
single-parameter family of possible poses from one of these two ellipses. This one
parameter family is then numerically searched to find the best possible agreement
with the second ellipse. This procedure was suggested in [85], which is generally
cited as the solution to this problem.

The approach of [85], however, is not appropriate for spacecraft navigation as it
(1) does not fully use the information content of every conic and (2) it only deals with
a conic pair. Instead, we search for a solution that uses all the information from a
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d-tuple (usually a triad) of image conics to solve for camera pose in the least squares
sense.

Since the application at hand is lunar crater identification, we may simplify the
problem by assuming the relative attitude is known. We consider this to be a reason-
able assumption in practice since we have excellent knowledge of both the Moon’s
attitude (from ephemeris data; e.g., SPICE kernels [1, 2]) and the spacecraft atti-
tude (from star trackers [81, 82]). There are two observations that can now be made.
First, we can think of no plausible failure mode (where recovery is still possible)
in which the spacecraft has no knowledge of time (necessary for finding lunar atti-
tude from SPICE kernels) or of inertial attitude. Second, we observe that this still
formally qualifies as a lost-in-space problem since it assumes no knowledge of the
spacecraft translational states (position or velocity). Moreover, the “known” attitude
comes from the star tracker and there are many well-established lost-in-space star
identification algorithms [118, 134]. Regardless, we presume the attitude transfor-
mation matrix TM

C is known, such that the pose estimation problem only requires a
solution for the selenographic camera location rM .

Therefore, let us begin with consideration of the projection of a single conic as
described by Eq. 58. Now, substitute for HCi

from Eq. 50 and expand to find

HT
Mi

BiHMi
− HT

Mi
BirMkT − krTMBiHMi

+ rTMBirMkkT = siCi (150)

where

Bi = TC
MKT AiKTM

C (151)

Recall here that Ai describes the measured image conic, Ci describes the 3D crater
conic in the ith crater’s ENU frame, TM

C is presumed known, and kT = [0 0 1]. Thus,
the only unknown in Eq. 150 is rM .

Now, recalling (34) for HMi
, rearrange the left-hand side into matrix form

[
ST TM

Ei
BiT

Ei

M S ST TM
Ei
Bi

(
pMi

− rM
)

(
pMi

− rM
)T BT

i T
Ei

M S
(
pMi

− rM
)T Bi

(
pMi

− rM
)
]

= siCi (152)

where S is from Eq. 35. It is immediately evident that the upper-left 2 × 2 submatrix
is independent of rM , the lower-right element is quadratic in rM , and the remaining
terms are linear in rM . Therefore, we first find the unknown scalar si using only the
upper-left 2 × 2 submatrix. Using the Frobenius norm, compute ŝi as

ŝi = arg min
si

∥∥∥ST TM
Ei
BiT

Ei

M S − siST CiS
∥∥∥2

F
(153)

which has the least squares solution

ŝi = vec(ST CiS)T vec(ST TM
Ei
BiT

Ei

M S)

vec(ST CiS)T vec(ST CiS)
(154)
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With the scale si known, we can now take the upper-right 2 × 1 submatrix to form
the linear system for all of the observed conics

⎡
⎢⎣
ST TM

E1
B1

...
ST TM

En
Bn

⎤
⎥⎦ rM =

⎡
⎢⎣

ST TM
E1
BipM1

− ŝiST C1k
...

ST TM
En
BnpMn

− ŝnST Cnk

⎤
⎥⎦ (155)

This may be solved for the selenographic camera location rM in the least squares
sense.

9.2 Comparing Two Image Conics

In order to verify a crater match hypothesis, we require a measure of the distance
between two conics. For crater pattern verification, this distance of interest is usually
between the image ellipse we expect from the projection of a crater’s rim (Ai) and the
image ellipse we measure of the same crater’s rim (Ãi). For the moment, however,
we will briefly discuss how to compute the distance between two arbitrary ellipses:
Ai and Aj .

Given two ellipses in an image, Ai and Aj , we seek a scalar distance metric
d(Ai ,Aj ) that satisfies the three usual axioms for a distance metric [32]

1. Minimality: d(Ai ,Aj ) = 0 iff Ai = Aj . That is, the distance between an ellipse
and itself is zero.

2. Symmetry: d(Ai ,Aj ) = d(Aj ,Ai ). That is, the distance from Ai to Aj is the
same as the distance from Aj to Ai .

3. Triangle Inequality: d(Ai ,Aj ) ≤ d(Ai ,Ak) + d(Ak,Aj )

as well as a fourth axiom unique to this application

4. Similarity Invariance: d(Ai ,Aj ) = d(S[Ai], S[Aj ]), where S[·] is a similarity
transformation. That is, the distance between Ai to Aj should not change if the
two ellipses undergo a common translation, rotation, or scaling in the image (i.e.,
undergo a common similarity transformation). See Fig. 23.

After reviewing the literature, we found numerous approaches for comparing ellipses,
but all fail to meet one (or more) of the above four axioms. Thus, after a brief review
of existing techniques, a novel method is proposed.

There exist various ad hoc methods based on the explicit ellipse parameters (a,
b, xc, yc, and ψ) [30, 113] or by measuring the distance only at one specific point
(e.g., via the Hausdorff distance [132, 136]), though none of these are similarity
invariants. Moreover, these methods have changing geometric meaning as the two
ellipses change shape and relative orientation. While not a violation of one of the
axioms, it is not a desirable attribute.

Another approach is to apply a common normalization to the implicit representa-
tion of both conics (e.g., det(Ai ) = 1) and then compute the Frobenius norm of their
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Fig. 23 Examples of an ellipse pair undergoing a simiarity transformation. The left-most ellipse pair may
be translated (S1); translated and rotated (S2); or translated, rotated, and scaled (S3). Under the similarity
invariance axiom for an ellipse pair distance metric, all four of these ellipse pairs should produce the same
value for distance since they all have the same relative geometry. Observe that all four of these ellipse pairs
have the same Jaccard distance and Gaussian angle. The area of ellipse intersection (i.e., ellipse overlap)
is shaded in light blue

difference [59]. There are various normalizations one could choose for the matrix A,
as summarized in [66]. Nevertheless, such a comparison metric is given by

dF (Ai ,Aj ) = ‖Ai − Aj‖2
F (156)

though the specific geometric meaning of this is not clear. This metric also fails to
meet the similarity invariance axiom.

We also considered computing the distance as the line integral about one ellipse of
the Euclidean distance to the other ellipse. While this admits an elegant and efficient
solution with many interesting properties, it fails to meet both the symmetry and
similarity invariance axioms. To meet the symmetry requirement, it would be possible
to compute this metric in both directions and sum the result, though this is expensive.
Regardless, a distance computed in this fashion will still fail to meet the similarity
invariance axiom. The method was thus abandoned for the present application.

The deficiencies of the above methods motivate the need for another metric that
satisfies all four distance axioms, has a geometrically consistent meaning, and pos-
sesses well-understood statistics. There are at least two such distance metrics: one
using the Jaccard distance and another by interpreting the ellipse as a multivariate
Gaussian.

9.2.1 Ellipse Pair Distance Metric with the Jaccard Index

The Jaccard index is the ratio of an intersection to a union. In this case, we take it to
be the ratio of the areas of the ellipse intersection to the ellipse union,

J (Ai ,Aj ) = Area(Ai ∩ Aj )

Area(Ai ∪ Aj )
(157)
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The Jaccard distance, which is well-known to satisfy all three of the classical distance
metric axioms [79], is computed as

dJ (Ai ,Aj ) = 1 − J (Ai ,Aj ) = 1 − Area(Ai ∩ Aj )

Area(Ai ∪ Aj )
(158)

It is straightforward to see that this metric is also satisfies our similarity invariance
axiom.

The only difficulty with the Jaccard distance is the quick computation of the inter-
section area. Although it is possible to analytically compute the area of ellipse overlap
[60], doing so requires the separate consideration of nine different relative ellipse
configurations. Such algorithm branching is generally undesirable. Fortunately, we
recall that the ellipses in question represent regions of substantial extent in a digital
image. Thus, the Jaccard distance may be approximated as the ratio of the number
of pixels inside both ellipses to the number of pixels inside either ellipse. We may
quickly count the pixels inside Ai by finding those pixels that satisfy the inequality
ūT Ai ū < 0, which is a simple and parallelizable computation. Once we count the
pixels in this way, computing the Jaccard distance is trivial.

9.2.2 Ellipse Pair Distance Metric with the Gaussian Angle

It is possible to interpret the 2D ellipse Ai as a bivariate Gaussian probability den-
sity function. If that interpretation is used for both Ai and Aj , the distance between
two ellipses may be computed using any number of measures for comparing Gaus-
sian PDFs. The authors of [144] follow this interpretation and consider the use of the
Kullback-Leibler Divergence (KLD) and variants of the Wasserstein distance. The
KLD, however, does not satisfy either the symmetry or triangle inequality axioms.
The Wasserstein distance meets the first three axioms, but is not invariant under
scaling (hence, fails the similarity invariance axiom—though modifications to the
classical metrics may alleviate this shortcoming).

We introduce a different distance metric also based on the interpretation of Ai

as a bivariate Gaussian. Therefore, begin by subdividing the conic locus matrix Ai

describing the image ellipse Ai as

Ai ∝
[

Yi −Yiyi

−yT
i Y

T
i (yT

i Yiyi − 1)

]
(159)

and it follows that that ūT
i Ai ūi = 0 and that

(ui − yi )
T Yi (ui − yi ) = 1 (160)

With this particular scaling of Ai , we immediately recognize the 2 × 2 submatrix Yi

as the shape of the ellipse

Yi =
[

cos ψi − sin ψi

sin ψi cos ψi

] [
1/a2

i 0
0 1/b2

i

] [
cos ψi sin ψi

− sin ψi cos ψi

]
(161)
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and yT
i = [uci

, vci
] as the image coordinates of the ellipse center. If we interpret the

ellipse as the 1σ isofrequency contour of a bivariate Gaussian distribution (i.e., the
so-called 1σ error ellipse), the ellipse Ai corresponds to the distribution N(yi ,Y

−1
i )

with probability density

pAi
(u) = |Yi |

2π
exp

[
−1

2
(u − yi )

T Yi (u − yi )

]
(162)

Therefore, given two ellipses Ai and Aj , we may compute the distance between
these two ellipses as the “angle” between pAi

(u) and pAj
(u).5 Such an angle is

computed as the inner product

cos θ =
∫

pAi
(u) pAj

(u)du√∫
p2
Ai

(u)du
∫

p2
Aj

(u)du
(163)

To compact integral notation in the equations that follow, we will no longer explicitly
write the argument of integration. To proceed, we compute a distance metric as

dGA(Ai ,Aj ) = θ = arccos

⎡
⎢⎣

∫
pAi

pAj√∫
p2
Ai

∫
p2
Aj

⎤
⎥⎦ (164)

From inspection, this clearly satisfies the minimality and symmetry conditions.
Satisfaction of the triangle inequality follows from the Cauchy–Schwarz inequality.

We compute

∫
p2
Ai

= |Yi |2
4π2

∫
exp

[
−1

2
(u − yi )

T Yi (u − yi )

]
= |Yi |2

4π2
· 2π

|2Yi | = |Yi |
8π

(165)

To find the numerator, we first write

∫
pAi

pAj
= |Yi ||Yj |

4π2

∫
exp

[
−1

2

(
(u − yi )

T Yi (u − yi ) + (u − yj )
T Yj (u − yj )

)]
(166)

Now, considering the term inside the exponential,

(u− yi )
T Yi (u− yi ) + (u− yj )

T Yj (u− yj ) = (u− z)T (Yi +Yj )(u− z) + c (167)

where

z = (Yi + Yj )
−1(Yiyi + Yj yj ) (168)

c = (yi − yj )
T Yi (Yi + Yj )

−1Yj (yi − yj ) (169)

5See [107] for more on the idea of the “angle” between two functions.
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Thus, noting that c is a constant, we rewrite the integral as

∫
exp

[
−1

2

(
(u − yi )

T Yi (u − yi ) + (u − yj )
T Yj (u − yj )

)]
(170)

=
∫

exp

[
−1

2
(u − z)T (Yi + Yj )(u − z) + c

]
(171)

= exp
[
− c

2

] ∫
exp

[
−1

2
(u − z)T (Yi + Yj )(u − z)

]
(172)

= exp
[
− c

2

] 2π

|Yi + Yj | (173)

Consequently,

∫
pAi

pAj
= |Yi ||Yj |

2π |Yi + Yj | exp
[
− c

2

]
(174)

= |Yi ||Yj |
2π |Yi + Yj | exp

[
−1

2
(yi − yj )

T Yi (Yi + Yj )
−1Yj (yi − yj )

]

We may therefore compute the distance metric dGA by substitution of Eqs. 165
and 174 into Eq. 164,

dGA(Ai ,Aj ) = arccos

{
4
√|Yi ||Yj |
|Yi + Yj | exp

[
−1

2
(yi − yj )

T Yi (Yi + Yj )
−1Yj (yi − yj )

]}

(175)

In addition to satisfying the four required axioms, one of the great advantages of this
particular distance metric is that it may be analytically computed from the parameters
of the two image ellipses Ai and Aj .

9.2.3 A Fast Method for Assessing Ellipse Correspondence

We propose to use the Gaussian angle distance metric as the criteria for evaluating a
potential crater correspondence. In the case where Aj is a perturbed version of Ai ,
we find that, to an excellent approximation,

d2
GA

σ 2
∼ χ2

4 (176)

where

σ ≈ 0.85√
aibi

σimg (177)

The validity of this approximation is illustrated in Fig. 24 for both a nearly circular
crater and a very elliptical crater.
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Fig. 24 Example Monte Carlo (MC) results (50,000 runs) for crater contour correspondence check using
Metric Camera images from Apollo 17. The left frame shows results on image AS17-M-0786 collected on
12 December 1972 (17:31:56 UTC), while the right frame shows results on image AS17-M-1557 collected
on 13 December 1972 (16:32:57 UTC). The top pair of images show the original Apollo image (left) and
with the overlay of a red elliptical crater rim and yellow region of interest (right). The bottom pair of
images is the zoomed-in region of interest by itself (left) and with an overlay of the red circular crater rim
and 50 yellow example crater rims from the Monte Carlo (right). The perturbed limb fits (e.g, those plotted
in yellow) were generated by perturbing the true limb’s ellipse parameters. The histograms at the bottom
show the statistic d2/σ 2 ∼ χ2

4 . The red overlay on the histogram is the analytic χ2
4 probability density

function (PDF). (Credit for raw scans of Apollo flight film images: NASA/JSC/ASU. See [73, 121])

Since the distance metric is observed to follow a χ2
4 distribution, we may con-

struct a statistically-informed criterion for accepting a crater match hypothesis. This
is accomplished by evaluating the quantile function for the χ2

4 distribution. For exam-
ple, the 99th percentile for the χ2

4 distribution occurs at 13.277, and would lead to an
acceptance criteria of

Hypothesis(Ai = Ãi ) ←
{

Accept d2
GAi

/σ 2 ≤ 13.277
Reject otherwise

(178)

The appropriate percentile for accepting or rejecting craters is application dependent
and left as a design variable left to the analyst.

Finally, when selecting the threshold for accepting crater matches, the user may
wish to consider that very elliptical craters have heavier tails (as compared to a
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true χ2
4 distribution) — thus increasing the likelihood of rejecting a valid crater

assignment. This may be seen in the right-hand example of Fig. 24. Except
for very elliptical craters, the deviation from the χ2

4 distribution is modest and
numerical experiments can help the analyst decide if this is important for a specific
application.

10 Numerical Results

10.1 Sensitivity to Crater Rim Fit and Viewing Geometry

We performed a Monte Carlo analysis to evaluate the sensitivity of the proposed
crater matching methodology to differing levels of measurement noise and under
different viewing geometries.

Therefore, as an example, consider a spacecraft placed randomly (with a uniform
distribution) around the lunar sphere, thus creating a situation where we randomly
image with equal probability any part of the lunar globe. We assume a camera with a
full field-of-view (FOV) of about 73.7× 73.7 deg (same as the Apollo metric camera
[38, 143]) and with a 2, 200 × 2, 200 pixel focal plane array (creating a 4.8 MPixel
image).

We now consider two parametric scenarios: (1) a nadir pointing camera with
varying errors in crater rim localization and (2) a fixed level of error in crater rim
localization and increasing off-nadir pointing angle. For the first scenario (nadir
pointing images), let the error in the ellipse parameters a, b, uc, vc all vary by σimg

and range from 0 to 3 pixel. Subpixel estimation of these parameters is not uncom-
mon since we generally fit an ellipse to hundreds of pixel measurements around the
crater circumference. Thus, for the second scenario (off-nadir pointing images), we
assume an error of 0.5 pixel in the ellipse parameters.

Performance for each case is summarized with the root-sum-square (RSS) error
in the estimated position of the camera. In all cases the estimated position errors
appeared to be unbiased and are not explicitly recorded here for brevity.

10.1.1 Local Crater Matching Results

Suppose the randomly placed spacecraft has an altitude of 150 km above the lunar
surface. At this altitude, the camera views primarily local crater patterns. In this case,
results for the two Monte Carlo scenarios are shown in Tables 2 and 3.

From Table 2 we observe that matching performance is not appreciably affected
by ellipse localization error until these errors reach about 2–3 pixels. Even then, the
degradation in performance is gradual. The dropping percentage of correct matches
occurs because the closest (nearest neighbor) index match to the computed invariants
is no longer correct. We could delay the onset of this effect by considering additional
neighbors beyond just the single best match, but this would increase run-time. The
reader should also be warned that these results do not suggest that crater localization
error always needs to be better than 2–3 pixels. What matters is not the absolute rim
localization error, but rather the rim localization error as compared to the size of the

1131The Journal of the Astronautical Sciences  (2021) 68:1056–1144

1 3



Table 2 Monte Carlo results (100 trials) for local crater matching using seven-element descriptor

Ellipse Fit Correct Incorrect No Match Less Than RSS Camera

Error Matches Matches Found Three Craters Position Error

0.0 pixel 100 0 0 0 2.5×10−6 m

0.5 pixel 96 0 1 3 116 m

1.0 pixel 96 0 4 0 285 m

1.5 pixel 94 0 4 2 428 m

2.0 pixel 91 0 7 2 620 m

2.5 pixel 93 0 7 0 696 m

3.0 pixel 83 0 15 2 923 m

A nadir-pointing camera is placed randomly around the lunar globe at an altitude of 150 km, with ellipse
fit error varying from 0 to 3 pixel

image craters (i.e., a 2 pixel error on a crater with a 10 pixel diameter is significant,
while a 2 pixel error on a crater with a 500 pixel diameter is not significant).

Test cases are counted in the “No Match Found” column when we see at least
three craters but the algorithm produces no matches. This can happen for a number
of reasons. First, the acceptance threshold for a crater match was set at the 99th
percentile (as in Eq. 178), which would suggest that 1 − 0.993 ≈ 3% of the triads
should fail to match due to measurement noise (this acceptance threshold can be
adjusted based on the analyst’s preferences). When there are more than three craters
in an image, the likelihood of this happening becomes rather small (but is never
zero). The second reason for no match is that no combination of observed craters
corresponds to an entry in the index. Given the FOV of this particular camera, it is
possible to see more than nine HEALPix surface pixels at one time—thus creating
the possibility of observing three craters that do not correspond to a triad within the
index.

From Table 3 we observe that off-nadir pointing has no meaningful effect (at least
up to 30 deg) on our ability to recognize a crater pattern.

Table 3 Monte Carlo results (100 trials) for local crater matching using seven-element descriptor

Off-Nadir Correct Incorrect No Match Less Than RSS Camera

Angle Matches Matches Found Three Craters Position Error

0 deg 98 0 1 1 140 m

10 deg 97 0 3 0 147 m

20 deg 99 0 1 0 134 m

30 deg 96 0 4 0 178 m

A camera is placed randomly around the lunar globe at an altitude of 150 km, with an off-nadir pointing
varying from 0 to 30 deg. Crater fit error of σ = 0.5 pixel on ellipse parameters
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Table 4 Monte Carlo results (100 trials) for global crater matching using three-element descriptor

Ellipse Fit Correct Incorrect No Match Less Than RSS Camera

Error Matches Matches Found Three Craters Position Error

0.0 pixel 100 0 0 0 1.1×10−6 m

0.5 pixel 100 0 0 0 485 m

1.0 pixel 100 0 0 0 1,294 m

1.5 pixel 99 0 1 0 1,790 m

2.0 pixel 99 0 1 0 2,605 m

2.5 pixel 96 0 4 0 3,549 m

3.0 pixel 95 0 5 0 4,500 m

A nadir-pointing camera is placed randomly around the lunar globe at an altitude of 600 km, with ellipse
fit error varying from 0 to 3 pixel

10.1.2 Global Crater Matching Results

Suppose the randomly placed spacecraft has an altitude of 600 km above the lunar
surface. At this altitude, the camera views primarily regional/global crater patterns.
In this case, results for the two Monte Carlo scenarios are shown in Tables 4 and 5.

We observe the same basic trend for the global pattern as for the local patterns.
Matching performance degrades as we approach localization error of around 2–3
pixels, which occurs at the roughly same level of noise only because the 600 km
altitude choice. We once again observe very little affect on matching performance
due to off-nadir pointing.

Note that the camera location is computed in exactly the same way for the local
and global matching examples (both use the algorithm from Section 9.1). The global
camera location errors are larger because the images are taken from a higher altitude.
Regardless, errors are still less than 1 km for the local crater patterns and less than 5
km for the global crater patterns—even with rim localization errors much larger than
should be expected in practice.

Table 5 Monte Carlo results (100 trials) for global crater matching using three-element descriptor

Off-Nadir Correct Incorrect No Match Less Than RSS Camera

Angle Matches Matches Found Three Craters Position Error

0 deg 100 0 0 0 549 m

10 deg 99 0 1 0 539 m

20 deg 99 0 1 0 652 m

30 deg 97 0 2 1 866 m

A camera is placed randomly around the lunar globe at an altitude of 600 km, with an off-nadir pointing
varying from 0 to 30 deg. Crater fit error of σ = 0.5 pixel on ellipse parameters
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10.2 Local Matching on Clementine Images

We demonstrate the seven-element local matching descriptor on real images collected
by the Clementine spacecraft’s UV/Visible (UV/Vis) camera. During its 71 days in
lunar orbit in 1994 [104], the Clementine mission collected millions of images of
the lunar surface with a variety of instruments. One of these instruments was the
UV/Visible camera, a 4.2 × 5.6 deg FOV camera with a 288 × 384 pixel CCD focal
plane array [58, 70]. Images of the lunar surface are available at a variety of ranges
and viewpoints and serve as an excellent source of data for testing our proposed crater
identification algorithms.

Some example crater identification results are shown in Fig. 25. These results
show good matching performance, both for nearly nadir pointing images (top two
rows) and for images from oblique viewpoints (bottom row). For each example
image, the best fit ellipse parameters (as manually obtained from the image) were
perturbed by a Gaussian distribution with a standard deviation of σimg = 0.5 pixel.
The noise causes a different crater pattern to be matched first for each run, resulting
in different crater triads shown in Fig. 25. In each case, the craters with the white
outline (and with centers connected by the thin yellow line) were correctly matched

Fig. 25 Example crater identification on a sampling of images from the Clementine UV/Vis Camera. Each
row shows results for a different Clementine image. Left frame is the raw image from [100]. Center and
right frame show examples of successful (correct) crater triad matches in white, with centers connected
by a yellow triangle to facilitate pattern visualization. Other craters (observed but not contributing to the
matched triad) are shown in red. Matches were performed using the seven-element descriptor for local
patterns

1134 The Journal of the Astronautical Sciences  (2021) 68:1056–1144

1 3



to the Robbins catalog [119] using the local crater index (HEALPix with k = 5)
described in Section 8.

10.3 Global Matching on Synthetic Images on Reference Lunar Trajectory

We demonstrate the three-element global matching descriptor on synthetic images
along a reference lunar trajectory.

Fig. 26 Example synthetic images along a reference trajectory as the spacecraft moves away from the
Moon (top to bottom). The craters used to compute invariants are outlined in white and a sampling of other
craters (which are not used) are outlined in red. Monte Carlo results (1,000 trials) assume a 1-σ ellipse
localization error of 1 pixel, leading to widening of invariant histograms as craters become smaller relative
to the fixed error. Synthetic images of the Moon were produced using PANGU Planet Surface Simulation
Software developed by the Space Technology Centre at the University of Dundee, Scotland [111]
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The synthetic images were generated using PANGU, and have a resolution of
2, 048×2, 592 pixels with a 30 deg horizontal FOV. Three example images are shown
in Fig. 26. For each image, the parameters of reference crater ellipse (a, b, uc, and vc)
were then perturbed with uncorrelated Gaussian noise of σimg = 1.0 pixel. This was
repeated 1,000 times for each image (with each trial having different noise applied
to the crater rim fits) to understand the sensitivity of the invariants to measurement
noise. Histograms of the three invariants are also shown in Fig. 26. Since the mea-
surement noise is fixed (σimg = 1.0 pixel on a, b, uc, and vc), we see the histograms
widen as the spacecraft gets farther away from the Moon (top to bottom in figure).
This occurs because the size of the pattern shrinks relative to the fixed magnitude of
ellipse localization error—hence the fixed error causes a greater perturbation of the
crater rim geometry.

11 Conclusion

The identification of craters in a digital image of the lunar surface is a critical capa-
bility, both for terrain relative navigation (TRN) and for the registration of scientific
images. In this work, we provide the first comprehensive and mathematically rig-
orous approach for image-based crater identification using concepts from invariant
theory. We first show that crater rims tend to be elliptical in shape, suggesting that
they are well modeled as a conic (e.g., circle, ellipse) lying on the lunar surface. We
then show that there are no projective invariants for conics lying on the surface of an
arbitrarily shaped celestial body, but there are invariants for regularly shaped bodies
like the Moon. Specifically, for a d-tuple of conics, we show that there are 3d − 6
algebraically independent projective invariants for conics lying on a nondegenerate
quadric surface and there are 5d − 8 algebraically independent projective invariants
for conics lying on a plane.

With the number of algebraically independent projective invariants known, we
then develop a practical means of computing these invariants from just the apparent
crater rims in a digital image (i.e., from the perspective projection of the 3D con-
ics). These invariants may be used to form a pattern descriptor that is always the
same, regardless of camera viewpoint. Thus, these descriptors may be precomputed
for known crater patterns and stored in a searchable index. We find that descriptors
for a triad of craters provide good matching results.

When given an image with observed crater rims, a match hypothesis for the crater
rim pattern may be found by a simple nearest neighbor search of the index. With
the resulting image-to-map crater correspondence hypothesis, we show how to esti-
mate the location of the camera in the least-squares sense using the three crater rims
directly (instead of just the crater center coordinates). Finally, to verify the crater
match and pose hypothesis, we reproject the expected crater rim contours into the
images and compare these with the measured crater rims. This is accomplished with
a new distance metric that compares the entire ellipse fit (instead of just the crater
center coordinates). By verifying with a distance metric considering the full crater
rim contours, we are able to verify a pattern using fewer craters than methods using
only center coordinates.
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These techniques are demonstrated in a variety of numerical experiments—both
on synthetic and real images. For a camera placed randomly around the Moon with
no a priori position knowledge, successful matches generally exceed 90% of the test
cases. The remaining cases return “no match,” either because there were fewer than
three craters in a particular image or because measurement noise corrupted the crater
rim fits too much for unambiguous recognition. In no case was an incorrect match
returned, a sign that the new distance metric can indeed verify match hypotheses with
only three craters (instead of the usual ≥ 5 craters).

While this work represents a significant advance in methods for crater-based TRN,
a great deal of work remains to be done. What follows are a few thoughts regarding
the next steps:

1. While the repurposing of scientific crater catalogs for TRN is convenient, these
catalogs were built with different objectives and are generally suboptimal for
TRN applications. Thus, we suggest that the lunar exploration community would
benefit greatly from a purpose-built TRN crater catalog. Such a catalog would
be populated with only well-defined craters, with each having a shape and size
consistent with what an automated CDA would produce.

2. We provide a complete set of independent projective invariants for crater patterns
on the surface of the Moon in Section 6 (three invariants for a triad of conics on
a quadric surface, seven invariants for a triad of conics on a plane). While there
are no additional algebraically independent invariants, it is possible to construct
other algebraically dependent invariants as functions of the ones provided in this
work (e.g., the p2 invariants in Section 7 are algebraic functions of the projective
invariants from Section 6). There may exist other forms of these invariants that
make lunar crater patterns more distinct or that have superior stability in the
presence of measurement noise. Searching for such alternative formulations of
the invariants from Section 6 is an interesting problem.

3. This work develops a global index of crater descriptors at three different scales
using HEALPix. Most real missions likely do not need a global index—but,
instead, just an index of craters along a reference trajectory. Although HEALPix
may still be used to manage varying scales, there is a great deal of forward work
in customizing the proof-of-concept outlined here to a mission-specific applica-
tion. The best design for an actual in-flight index is not self evident and is the
topic of ongoing work.

4. Not addressed in this work are crater detection algorithms (CDAs). Though many
different CDAs exist, it is not clear which specific algorithms are best paired
with the crater identification framework outlined here. Our crater identification
algorithm is critically dependent on the localization of the best-fit ellipse to the
crater rim, which is often not the metric used to design or evaluate CDAs. Thus,
finding (or developing) an appropriate CDA is an obvious topic of follow-on
work.

In conclusion, we find that crater-based TRN holds great promise for lost-in-space
navigation near the Moon. We introduce a robust method for crater identification in
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this manuscript, though we note that additional work is required to achieve a flight-
capable system. Crater-based TRN is a rich field for future study.
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