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We introduce the G-stable rank of a higher order tensors over perfect fields. The G-stable rank is related
to the Hilbert–Mumford criterion for stability in geometric invariant theory. We will relate the G-stable
rank to the tensor rank and slice rank. For numerical applications, we express the G-stable rank as a
solution to an optimization problem. Over the field F3 we discuss an application to the cap set problem.
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1. Introduction

1A. Ranks of tensors. We will introduce the G-stable rank for tensors, describe its properties and
relate it to other notions for the rank of a tensor, such as the tensor rank, border rank, slice rank and
noncommutative rank. Suppose that K is a field, V1, V2, . . . , Vd are finite dimensional K-vector spaces
and V = V1 ⊗ V2 ⊗· · ·⊗ Vd is the tensor product. All tensor products are assumed to be over the field K
unless stated otherwise. The definition of tensor rank goes back to Hitchcock [1927; 1928].

Definition 1.1. The rank rk(v) of a tensor v ∈ V is the smallest nonnegative integer r such that we can
write v =

∑r
i=1 vi,1 ⊗ vi,2 ⊗ · · · ⊗ vi,d with vi, j ∈ V j for all i and j .

There are many applications of the tensor rank and the related concept of CP-decomposition; see
[Kolda and Bader 2009] for a survey. For d = 2, tensor rank coincides with matrix rank. Computing the
tensor rank is NP-hard [Håstad 1989], and tensor rank is ill-behaved. For example, the set X (rk, r)⊆ V of
all tensors of rank ≤ r is not always Zariski closed. The border rank brk(v) of a tensor v was introduced
by Bini [1980] and is the smallest positive integer r such that v lies in the Zariski closure of X (rk, r); see
also [Bürgisser et al. 1997; Landsberg 2012]. The slice rank of a tensor was introduced by Terence Tao;
see [Tao and Sawin 2016; Blasiak et al. 2017].
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Definition 1.2. A nonzero tensor v ∈ V has slice rank 1 if it is contained in

V1 ⊗ · · · ⊗ Vi−1 ⊗w⊗ Vi+1 ⊗ · · · ⊗ Vd

for some i and some w ∈ Vi . The slice rank srk(v) of an arbitrary tensor v ∈ V is the smallest nonnegative
integer r such that v is the sum of r tensors with slice rank 1.

1B. The definition of the G-stable rank. We will now define the G-stable rank. It was noted in [Blasiak
et al. 2017] that the slice-rank is closely related the notion of stability in geometric invariant theory; see
[Mumford et al. 1994]. The authors also introduce the instability of a tensor and relate it to the slice rank.
The instability of a tensor does not behave like a rank function, but it is closely related to the G-stable
rank. We will define the G-stable rank in terms of degenerations and power series. It can also be defined
in terms 1-parameter subgroup using the Hilbert–Mumford criterion in geometric invariant theory (see
Theorem 2.4). The Hilbert–Mumford criterion is often formulated when working over an algebraically
closed field K . Kempf [1978] showed that the Hilbert–Mumford criterion still applies when working of a
perfect field K . For this reason, we will assume that K is a perfect field for the remainder of the paper.

To define the G-stable rank, we need to introduce the ring K [[t]] of formal power series in t and its
quotient field K ((t)) of formal Laurent series. The t-valuation of a series a(t) ∈ K ((t)) is the smallest
integer d such that a(t) = tdb(t) with b(t) ∈ K [[t]]. By convention, valt(0) = ∞. If W is a K-vector
space and v(t) ∈ K ((t))⊗ W then we define

valt(v(t))= min{d | v(t)= tdw(t) and w(t) ∈ K [[t]] ⊗ W }.

We say that v(t) has no poles when valt(v(t))≥ 0, which is equivalent to v(t) ∈ K [[t]]⊗ W . In that case
we say that limt→0 v(t) exists, and is equal to v(0) ∈ W .

The group GL(W, K ((t))) will denote the group of K ((t))-linear endomorphisms of the space
K ((t)) ⊗K W . We may view GL(W, K ((t))) as a subset of K ((t)) ⊗K End(W ). If W = K n then
K (t)⊗K W ∼= K ((t))n and we can identify GL(W, K ((t))) with the set of n × n matrices with entries in
the field K ((t)). If R ⊆ K ((t)) is a K-subalgebra of K ((t)) (such as R = K [[t]], R = K [t, t−1

] or R = K [t]),
then GL(W, R) is the intersection of GL(W, K ((t))) with R ⊗K End(W ) in K ((t))⊗K End(W ). Note
that the inverse of an element in GL(W, R) lies in GL(W, K ((t))), but not necessarily in GL(W, R). If
W = K n , then GL(W, R) is the set of n × n matrices with entries in R that, viewed as a matrix with
entries in K ((t)), are invertible.

We consider the action of the group G = GL(V1)× GL(V2)× · · · × GL(Vd) on the tensor product
space V = V1 ⊗ V2 ⊗ · · · ⊗ Vd . For any K-subalgebra R ⊆ K ((t)), we define

G(R)= GL(V1, R)× · · · × GL(Vd , R).

The group G(K ((t))) acts on K ((t))⊗ V .
For any weight α = (α1, α2, . . . , αd) ∈ Rd

>0 we will have a notion of G-stable rank, but the case
α= (1, 1, . . . , 1) will be of particular interest. Suppose that g(t)∈ G(K [[t]]), v ∈ V and valt(g(t) ·v) > 0.
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We consider the slope

µα(g(t), v)=

∑d
i=1 αi valt(det gi (t))

valt(g(t) · v)
. (1)

Heuristically, the denominator in the slope measures how fast g(t) · v goes to 0 as t → 0. The numerator
measures how fast the product of the eigenvalues of g1(t), g2(t), . . . , gd(t) go to 0 as t → 0. A small
slope means that v is very unstable in the sense that g(t) · v goes to 0 quickly, while, on average, the
eigenvalues of gi (t) go to 0 slowly.

Definition 1.3. The G-stable α-rank rkG
α (v) of v as the infimum of all µα(g(t), v) where g(t)∈ G(K [[t]])

and valt(g(t) · v) > 0. If α = (1, 1, . . . , 1), then we may write rkG instead of rkG
α .

Using a K-rational version of the Hilbert–Mumford criterion [Hilbert 1893; Mumford et al. 1994]
by Kempf [1978], we will show that for computing the G-stable α-rank, one only has to consider g(t)
that are 1-parameter subgroups of G without poles (Theorem 2.4). In this context, g(t) ∈ G(K [t]) is a
1-parameter subgroup if for every i we can choose a basis of Vi such that the matrix of g(t) is diagonal
and each diagonal entry of that matrix is a nonnegative power of t .

We denote the standard basis vectors in K n by [1], [2], . . . , [n], and we abbreviate a tensor [i1] ⊗

[i2] ⊗ · · ·⊗ [id ] by [i1, i2, . . . , id ].

Example 1.4. Suppose that V1 = V2 = V3 = K 2, and v = [2, 1, 1] + [1, 2, 1] + [1, 1, 2]. We take
g(t)= (g1(t), g2(t), g3(t)) with

g1(t)= g2(t)= g3(t)=

(
t 0
0 1

)
.

We have g(t) · v = t2v, det(gi (t))= t , and

µ(g(t), v)= µ(1,1,1)(g(t), v)=
valt(det g1(t))+ valt(det g2(t))+ valt(det g3(t))

valt(g(t) · v)
=

1 + 1 + 1
2

=
3
2
.

This shows that rkG(v)≤
3
2 . One can show that rkG(v)=

3
2 ; see Examples 1.5 and 4.5.

1C. Properties of the G-stable rank. If v is a rank 1 tensor, then we have rkG
α (v)= min{α1, . . . , αd} and

rkG(v)= 1 (Lemma 3.1). The G-stable rank is related to other notions of rank. We have (see Corollary 3.7
and Proposition 4.9)

2 srk(v)
d

≤ rkG(v)≤ srk(v)≤ brk(v)≤ rk(v).

This implies that for d = 2, the G-stable rank, the slice rank and the matrix rank coincide.
The tensor rank depends on the field one is working over. For example, the tensor [1, 1, 1]−[1, 2, 2]−

[2, 1, 2] − [2, 2, 1] has rank 3 as a tensor in R2×2×2 but rank 2 when viewed as a tensor in C2×2×2.
Although it is not clear from the definition, the G-stable rank does not change when passing to a field
extension of K (see Theorem 2.5).
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Another nice property of the G-stable rank is that the border rank phenomenon does not happen and
the set X (rkG

α , r) of all tensors v with rkG
α (v)≤ r is Zariski closed (Theorem 2.11). Tao and Sawin [2016]

proved a similar result for the slice rank, and this implies that srk(v)≤ brk(v) for all tensors v.
Like other rank notions, the G-stable rank satisfies the triangle inequality: rkG

α (v+w)≤ rkG
α (v)+rkG

α (w)

(see Proposition 3.6). If v ∈ V1 ⊗ V2 ⊗ · · ·⊗ Vd and w ∈ W1 ⊗ W2 ⊗ · · ·⊗ Wd then the direct sum of v
and w, viewed as(

v

w

)
∈

V1 ⊗ V2 ⊗ · · · ⊗ Vd

⊕

W1 ⊗ W2 ⊗ · · · ⊗ Wd

⊆ V ⊞ W :=

 V1

⊕

W1

 ⊗

 V2

⊕

W2

 ⊗ · · · ⊗

 Vd

⊕

Wd


will be denoted by v⊞w. (We will use the notation v⊞w and V ⊞W rather than the more common notation
v⊕w and V ⊕W to emphasize that this direct sum is a “vertical” operation, i.e., the sum Vi ⊕Wi is taken
within each tensor factor.) The G-stable rank is additive (Proposition 3.8): rkG

α (v⊞w)= rkG
α (v)+rkG

α (w).
In particular, if

v = [1, 1, . . . , 1] + [2, 2, . . . , 2] + · · · + [r, r, . . . , r ]

= [1, 1, . . . , 1]⊞ [1, 1, . . . , 1]⊞ · · ·⊞ [1, 1, . . . , 1]︸ ︷︷ ︸
r

∈ K r
⊗ K r

⊗ · · · ⊗ K r︸ ︷︷ ︸
d

,

then rkG
α (v)= r rkG

α ([1, 1, . . . , 1])= r min{α1, . . . , αd} and rkG(v)= r . Strassen [1973] conjectured that
tensor rank is additive when K is infinite, but Shitov recently gave a counterexample to this long standing
conjecture; see [Shitov 2019].

If v ∈ V1⊗V2⊗· · ·⊗Vd and w ∈ W1⊗W2⊗· · ·⊗We, then we can form the “horizontal” tensor product
v⊗w ∈ V1 ⊗· · ·⊗ Vd ⊗ W1 ⊗· · ·⊗ We. It is clear that rk(v⊗w)≤ rk(v) rk(w). It was recently shown in
[Christandl et al. 2019] that we do not always have equality. The G-stable rank behaves quite differently
for the horizontal tensor product. We have rkG

α,β(v⊗w)= min{rkG
α (v), rkG

β (w)} (see Proposition 3.4). If
d = e then there is another way of forming a tensor product. The tensor product v⊗w viewed as

v

⊗

w

∈

V1 ⊗ V2 ⊗ · · · ⊗ Vd

⊗

W1 ⊗ W2 ⊗ · · · ⊗ Wd

⊆

 V1

⊗

W1

 ⊗

 V2

⊗

W2

 ⊗ · · · ⊗

 Vd

⊗

Wd


will be denoted by v⊠w. We will refer to this operation as a vertical tensor product or a Kronecker tensor
product. It is clear that rk(v⊠w)≤ rk(v⊗w). It has long been known that rk(v⊠w) can be smaller than
rk(v) rk(w). For example, if v1 = [1, 1, 1]+[2, 2, 1], v2 = [1, 1, 1]+[2, 1, 2] and v3 = [1, 1, 1]+[2, 2, 1]

then v1 ⊠ v2 ⊠ v3 is the matrix multiplication tensor for 2 × 2 matrices which has rank 7 [Strassen
1969], so 7 = rk(v1 ⊠ v2 ⊠ v3) < rk(v1) rk(v2) rk(v3) = 23. If K has characteristic 0, then we have
rkG
αβ(v⊠w)≥ rkG

α (v) rkG
β (v) (Theorem 5.4). We conjecture that this inequality is also true when K is a

perfect field of positive characteristic. The slice rank does not behave as nicely with respect to vertical
tensor product and srk(v⊠w) could be larger or smaller than srk(v) srk(w); see [Christandl et al. 2018,
Example 5.2].
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1D. G-stable rank for complex tensors. If K = C, then the G-stable rank can be computed in a different
way. For a finite dimensional complex Hilbert space, we will denote the Hermitian form by ⟨ · , · ⟩ and
the ℓ2 norm (or Frobenius norm) by ∥v∥ =

√
⟨v, v⟩. Suppose that V1, V2, . . . , Vd are finite dimensional

Hilbert spaces, which makes V into a Hilbert space. If A is a linear map between finite dimensional
Hilbert spaces, then its spectral norm ∥A∥σ is the operator norm ∥A∥σ = maxv ̸=0∥Av∥/∥v∥, which is
also the largest singular value of A.

For a tensor v ∈ V , let 8i (v) : (V1 · · ·⊗ V̂i ⊗· · ·⊗ Vd)
⋆
→ Vi be the i-th flattening. Then the G-stable

α-rank of a tensor v ∈ V is equal to

rkG
α (v)= sup

g∈G
min

i

αi∥g · v∥2

∥8i (g · v)∥2
σ

(2)

(see Theorem 5.2).

Example 1.5. Consider again the example v= [2, 1, 1]+[1, 2, 1]+[1, 1, 2] ∈ K 2×2×2 as in Example 1.4,
but now we will work over K = C. We have ∥v∥ =

√
3. The first flattening of v is equal to

81(v)=

(
0 1 1 0
1 0 0 0

)
which has singular values 1 and

√
2. So ∥81(v)∥σ =

√
2. By symmetry, we also have ∥82(v)∥σ =

∥83(v)∥σ =
√

2. It follows that

rkG(v)= sup
g∈G

min
i

∥g · v∥2

∥8i (g · v)∥2
σ

≥ min
i

∥v∥2

∥8i (v)∥2
σ

=
3
2
.

1E. The cap set problem. We say that a subset S of an abelian group A does not contain an arithmetic
progression (of length 3) if there are no distinct elements x, y, z ∈ S with x+z =2y. For an abelian group A,
let r3(A) be the largest cardinality of a subset S ⊆ A without an arithmetic progression. Finding upper and
lower bounds for r3(A) has been studied extensively in number theory. For the group A = (Z/3Z)n ∼= Fn

3

this is known as the cap set problem. Brown and Buhler [1982] showed that r3(F
n
3) = o(3n) and this

was later improved to r3(F
n
3)= O(3n/n) by Meshulam [1995] and to o(3n/n1+ε) by Bateman and Katz

[2012]. Using the polynomial method of Croot, Lev and Pach [Croot et al. 2017], who showed that
r3((Z/4Z)n)= o(cn) for some c< 4, Ellenberg and Gijswijt [2017] showed that r3(F

n
3)≤ 3θn

= o(2.756n),
where θ < 2.756. We also have a lower bound r3(F

n
3)= ω(2.21n) by Edel. The bound (and the proof) of

Ellenberg and Gijswijt is also valid for tricolored sum-free sets for which an asymptotic lower bound
ω(θn) was given by Kleinberg, Sawin and Speyer [Kleinberg et al. 2018]. So for tricolored sum-free sets,
the upper and lower bound have the same exponential growth.

Tao noted that the Ellenberg–Gijswijt proof can be nicely presented using the concept of slice rank. A
key idea is to prove the inequality r3(F

n
3)≤ srk(u⊠n) where

u =

∑
i, j,k∈Z/3Z
i+ j+k=0

[i, j, k] ∈ F3×3×3
3
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n upper bound E.–G. P.

1 2 3 2
2 6 7 4
3 15 18 11
4 39 45 30
5 105 123 72
6 274 324 196
7 722 822 548
8 1,957 2,277 1,350
9 5,193 6,075 3,686

10 13,770 15,579 10,386

n upper bound E.–G. P.

11 37,477 43,365 25,896
12 100,296 116,532 70,890
13 266,997 300,888 200,592
14 728,661 840,030 503,964
15 1,961,103 2,267,838 1,382,334
16 5,235,597 5,883,309 3,922,206
17 14,316,784 16,459,335 9,906,786
18 38,685,141 44,580,537 27,215,544
19 103,504,935 116,055,423 77,370,282
20 283,466,139 325,182,235 195,202,290

Table 1. Comparison to the bounds of Ellenberg and Gijswijt and of Petrov.

and to combine this with asymptotic estimates for the slice rank. We will show that r3(F
n
3)≤ rkG(u⊠n)≤

srk(u⊠n). Using the G-stable rank, we get better upper bounds for the cardinality of a cap set (or a
tricolored sum-free set). Below is a table of the upper bounds we get for n ≤ 20. We compared our bound
to the bound of Ellenberg and Gijswijt that is based on the slice rank. In the comment section of Tao’s
blog [2016], Fedor Petrov outlined a more refined argument to improve the upper bound for the cardinality
of cap sets. We also compared our bounds with Petrov’s bound. The comparisons are given in Table 1.

As we see, our bounds improve the bounds of Ellenberg and Gijswijt, but not the bounds of Petrov.
Since Petrov’s argument uses the symmetry, it is not clear whether his bound is also an upper bound for
the tricolored sum-free sets. Also, this bound does not exactly come from bounds for the slice rank, but
may be related to some other notion of rank. It would be interesting to see if the notion of G-stable rank
could be combined with Petrov’s approach to obtain even sharper bounds for the cap set problem.

Since the slice rank and the G-stable rank are the same up to a constant, the asymptotic slice rank and
the asymptotic G-stable rank are the same. It was shown in [Christandl et al. 2018] that, over the complex
numbers, the asymptotic slice rank can be expressed in quantum functionals. It was also noted there that
the Ellenberg–Gijswijt bound for the cap set problem is closely related to the Strassen’s computation of
the asymptotic spectrum of the multiplication tensor of the algebra F3[x]/(x3); see [Strassen 1991].

2. The G-stable rank and the Hilbert–Mumford criterion

2A. The Hilbert–Mumford criterion. We will discuss the K-rational version of the Hilbert–Mumford
criterion by Kempf [1978]. We remind the reader that the base field K is assumed to be perfect. Suppose
that G is a connected reductive algebraic group over a field K , X is a separated K-scheme of finite type
and G × X → X is a G-action that is also a morphism of schemes over K . The multiplicative group
is defined as Gm = Spec K [t, t−1

]. A 1-parameter subgroup of G is a homomorphism λ : Gm → G of
algebraic groups. We say that this 1-parameter subgroup of G is K-rational if the homomorphism is a
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morphism of algebraic varieties defined over K . In the case where K is finite, we caution the reader that
the set G(K ) of K rational points in G is finite and may not be Zariski dense in the algebraic group G.
If x ∈ X (K ) is a K-rational point of X , then G · x denotes a subscheme of X which is not necessarily
Zariski closed (even if G(K ) is finite). The Zariski closure G · x is a closed subscheme of X .

Theorem 2.1 [Kempf 1978, Corollary 4.3]. Suppose that x ∈ X (K ) is a K-rational point, S ⊆ X is a
G-invariant closed subscheme of X such that G · x ∩ S ̸= ∅, Then there exists a K-rational 1-parameter
subgroup λ : Gm → G such that limt→0 λ(t) · x = y for some y ∈ S(K ).

In our situation, X = V is a K-vector space which is a representation of G, and S = {0}. A vector
v ∈ V is called G-semistable if G · v does not contain 0. Now Theorem 2.1 implies:

Corollary 2.2. If G is a connected reductive algebraic group, v ∈ V and 0 ∈ G · v then there exists a
K-rational 1-parameter subgroup λ : Gm → G such that limt→0 λ(t) · v = 0.

A 1-parameter subgroup of GLn is of the form

λ(t)= C


t x(1)

t x(2)

. . .

t x(n)

 C−1

with C ∈ GLn and x(1), x(2), . . . , x(n)∈ Z. In particular, we can view λ as an element of GLn(K [t, t−1
])

where K [t, t−1
]⊆ K ((t)) is the ring of Laurent polynomials. If v= (v1 v2 · · · vn)

t
∈ K n then limt→0 λ(t)·

v = 0 if for all i , we have vi = 0 or x(i) > 0. We will take V = V1 ⊗ V2 ⊗ · · · ⊗ Vd and G =

GL(V1)×GL(V2)×· · ·×GL(Vd). A 1-parameter subgroup of G is of the form (λ1(t), λ2(t), . . . , λd(t))
where λi (t) : Gm → GL(Vi ) is a 1-parameter subgroup for all i .

For an integer vector α = (α1, α2, . . . , αd) ∈ Zd we define a homomorphism of algebraic groups
detα : G → Gm by (A1, . . . , Ad) 7→

∏d
i=1 det(Ai )

αi . This homomorphism corresponds to a 1-dimensional
representation of G, which we will also denote by detα. We will now relate the G-stable rank to
semistability in geometric invariant theory. We compare the G-stable rank with a rational number p/q and
for this we use semistability in the representations V ⊗p and certain twists with products of determinants.

Proposition 2.3. Suppose that β ∈ Qd
>0, p is a nonnegative integer and q is a positive integer with

qβ ∈ Zn . We define a representation W by

W = (V ⊗p
⊗ det−qβ)⊕ V n1

1 ⊕ V n2
2 ⊕ · · · ⊕ V nd

d .

and choose ui ∈ V ni
i

∼= K ni ×ni of maximal rank ni for every i . Then we have rkG
β (v)≥ p/q if and only if

w = (v⊗p
⊗ 1, u1, . . . , ud) is G-semistable.

Proof. Suppose that rkG
β (v) < p/q. Then there exists g(t)= (g1(t), . . . , gd(t)) ∈ G(K [[t]]) with

valt(g(t) · (v⊗p
⊗ 1))= p valt(g(t) · v)−

d∑
i=1

qβi valt(gi (t)) > 0.
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The limit limt→0 g(t) ·w= (0, g(0) ·u)= (0, g(0) ·u1, . . . , g(0) ·ud) lies in the closure of the orbit G ·w.
Since 0 lies in the orbit closure of (0, g(0) · u), it also lies in the orbit closure of w. We conclude that w
is not G-semistable.

Now suppose that w is not G-semistable. By the Hilbert–Mumford criterion, there exists a 1-parameter
subgroup λ(t)= (λ1(t), . . . , λd(t)) ∈ G(K [t, t−1

]) of G such that limt→0 λ(t) ·w = 0. This implies that
limt→0 λi (t) · ui = 0. Since ui has maximal rank, we get limt→0 λi (t)= 0 and λi (t) ∈ GL(Vi , K [t]). So
we have λ(t) ∈ G(K [t])⊆ G(K [[t]]). We also get

0< valt(λ(t) · (v⊗p
⊗ 1))= p valt(λ(t) · v)−

d∑
i=1

qβi valt(λi (t))

and therefore

µG
β (v)=

∑d
i=1 βi valt(λi (t))
valt(λ(t) · v

<
p
q
.

We conclude that rkG
β (v) < p/q . □

Theorem 2.4. If α ∈ Rd
>0, then the G-stable rank rkG

α (v) is the infimum of µα(λ(t), v) where λ(t) ∈

G(K [t]) is a 1-parameter subgroup of G and valt(λ(t) · v) > 0.

Proof. Assume that rkG
α (v) < r for some rational number r . There exists a β ∈ Qd

>0 with β −α ∈ Rd
>0

and rkG
β (v) < r . We can write r = p/q where p and q are positive integers such that qβ ∈ Zd . By

Proposition 2.3, w is not G-semistable and from the proof of Proposition 2.3 follow that there exists a
1-parameter subgroup λ(t) ∈ G(K [t]) such that µα(λ(t), v)≤ µβ(λ(t), v) < r . This shows that even if
λ(t) ∈ G(K [t]) is a 1-parameter subgroup of G, µα(λ(t), v) can get arbitrarily close to rkG

α (v). □

2B. The relation between G-stable rank and SL-stability. First we prove that the G-stable rank does
not change when we extend the field.

Theorem 2.5. Suppose that v∈ V = V1⊗K V2⊗K ⊗ · · ·⊗K Vd where V1, V2, . . . , Vd are finite dimensional
K-vector spaces, and v̄ = 1 ⊗ v ∈ V = L ⊗K V ∼= V 1 ⊗L V 2 ⊗L ⊗ · · · ⊗L V d with V i = L ⊗K Vi for
all i . Then we have rkG

α (v)= rkG
α (v̄). In other words, the G-stable rank does not change under base field

extension.

Proof. If β ∈ Qd
>0 then we can follow the set up in Proposition 2.3, where p, q ∈ Z, p ≥ 0, q > 0 and

qβ ∈ Zd . We choose ui ∈ V ni
i invertible for all i , and define

w = (v⊗p
⊗ 1, u1, . . . , ud) ∈ W = (V ⊗p

⊗K det−qβ)⊕ V n1
1 ⊕ V n2

2 ⊕ · · · ⊕ V nd
d .

Using the base field extension, we get

w̄ = (v̄⊗ 1, ū1, . . . , ūd) ∈ L ⊗K W = (V ⊗p
⊗L det−qβ)⊕ V n1

1 ⊕ V n2
2 ⊕ · · · ⊕ V nd

d .
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Now G-semistability does not chance after base field extension. So w is G-semistable if and only if w̄ is
G-semistable. So we have

rkG
β (w)≥

p
q ⇔ w is G-semistable ⇔ w̄ is G-semistable ⇔ rkG

β (w̄)≥
p
q .

This proves that rkG
β (w) = rkG

β (w̄). Since rkG
α (w) is the supremum of rkG

β (w) over all β ∈ Qd
>0 with

β ≤ α, we also get rkG
α (w)= rkG

α (w) for all α ∈ Rd
>0. □

Proposition 2.6. Suppose that α = (1/n1, 1/n2, . . . , 1/nd) where ni = dim Vi . For v ∈ V = V1 ⊗ V2 ⊗

· · ·⊗ Vd we have rkG
α (v)≤ 1. Moreover, rkG

α (v)= 1 if and only if v is semistable with respect to the group
H = SL(V1)× SL(V2)× · · · × SL(Vd).

Proof. The inequality rkG
α (v) ≤ 1 is obvious. Suppose that v ∈ V is not H -semistable. Then there

exists a 1-parameter subgroup λ(t) = (λ1(t), . . . , λd(t)) : Gm → H with limt→0 λ(t) · v = 0. We can
choose c1, c2, . . . , cd such that λ′(t) = (tc1λ1(t), . . . , tcdλd(t)) ∈ G(K [t]). Note that det(tciλi (t)) =

det(tci Ini ) det(λi (t))= tci ni . Now we have valt(λ′(t) · v)= s + c1 + c2 + · · · + cd and

µ(λ′(t), v)=

∑d
i=1

1
ni

valt(det(tciλi (t)))

valt(λ′(t) · v)
=

∑d
i=1 ci

s +
∑d

i=1 ci
< 1.

This proves that rkG
α (v) < 1.

Conversely, suppose that rkG
α (v) < 1. Choose a polynomial 1-parameter subgroup of G such that

valt(λ(t) · v) = s > 0 and µα(λ(t), v) < 1. Let ci = valt(det λi (t)). Then we have µα(λ(t), v) =∑d
i=1 ci/ni < s. After replacing t by tk for some positive integer k we may assume that ci/ni ∈ Z for

all i . Let λ′(t)= (t−c1/n1λ1(t), t−c2/n2λ2(t), . . . , t−cd/ndλd(t)). Then λ′(t) is a 1-parameter subgroup of
H and valt(λ′(t) · v)= s −

∑d
i=1 ci/ni > 0, so limt→0 λ

′(t) · v = 0. This shows that v is H -unstable. □

2C. The G-stable rank and the noncommutative rank. The noncommutative rank is defined as the
rank of A(t) = t1 A1 + t2 A2 + · · · + tm Am where t1, t2, . . . , tm are variables in the free skew field
R = K (<t1, t2, . . . , tm>) and A(t) is viewed as a p×q matrix with entries in R; see [Fortin and Reutenauer
2004; Cohn 1995] for more on free skew fields. We will use the following equivalent definition; see
[Fortin and Reutenauer 2004]:

Definition 2.7. Suppose that A1, A2, . . . , Am are p×q matrices. Then the noncommutative rank ncrk(A)
of A = (A1, . . . , Am) is equal to the maximal value of

q + dim
m∑

i=1

Ai (W )− dim W

over all subspaces W ⊆ K q .

It was shown in [Ivanyos et al. 2017] that the noncommutative rank of A is also equal to maximum of

rk
(∑m

i=1 Ti ⊠ Ai
)

d
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where d is a positive integer, T1, T2, . . . , Tm are d × d matrices, and ⊠ is the Kronecker product of two
matrices (so Ti ⊠ Ai is a dp × dq-matrix).

The noncommutative rank relates to stability. If A is an m-tuple of n ×n matrices (i.e., p = q = n) then
ncrk(A)= n if and only if A is semistable with respect to the simultaneous left-right action of SLn × SLn

on m-tuples of matrices; see [Ivanyos et al. 2017].
We can relate the noncommutative and G-stable rank as follows. First, we will view the m-tuple

A = (A1, A2, . . . , Am) as a tensor. Using a linear isomorphism K p
⊗ K q ∼= K p×q , we can view

A1, A2, . . . , Am as tensors in K p
⊗ K q . The m-tuple A = (A1, A2, . . . , Am) corresponds to a tensor

TA =
∑m

i=1 Ai ⊗ [i] ∈ K p
⊗ K q

⊗ K m .

Lemma 2.8. The noncommutative rank is the smallest value of r + s for which there exist linearly
independent vectors v1, . . . , vr ∈ K p and linearly independent vectors w1, . . . , ws ∈ K q with

TA ∈

r∑
i=1

vi ⊗ K q
⊗ K m

+

s∑
j=1

K p
⊗w j ⊗ K m . (3)

Proof. If (3) holds, then take W to be the (q−s)-dimensional space perpendicular to the vectors
w1, w2, . . . , ws . The space Ai (W ) is contained in the span of v1, v2 . . . , vr . So the noncommutative rank
is at most q + r − (q − s)= r + s.

We show that r + s can be equal to ncrk(A). Suppose that k = ncrk(A). For some s there exists an
subspace V ⊆ K p with k = q +dim V −dim W , where V =

∑m
i=1 Ai (W ). Choose a basis w1, w2, . . . , ws

of the space orthogonal to W . Then we have s = q − dim W . Also choose a basis v1, v2, . . . , vr of V .
Now (3) holds and r + s = q − dim W + dim V = k. □

The following proposition shows that the noncommutative rank can be seen as a special case of the
G-stable rank.

Proposition 2.9. For α = (1, 1, ℓ) and ℓ≥ min{p, q} we have ncrk(A)= rkG
α (TA).

Proof. Let k = ncrk(A). Then we have

TA ∈

r∑
i=1

vi ⊗ K q
⊗ K m

+

s∑
j=1

K p
⊗w j ⊗ K m,

for some r and s with r + s = k and vectors v1, . . . , vr , w1, . . . , ws . We extend v1, . . . , vr to a basis
v1, . . . , vp and extend w1, . . . , ws to a basis w1, . . . , wq . We define a 1-parameter subgroup λ(t) =

(λ1(t), λ2(t), λ3(t)) in G = GLp × GLq × GLm by λ1(t) · vi = tvi for i = 1, 2, . . . , r , λ1(t) · vi = vi for
i = r +1, r +2, . . . , p, λ2(t) ·w j = tw j for j = 1, 2, . . . , s, λ2(t) ·w j =w j for j = s+1, s+2, . . . , q and
λ3(t) is just the identity. Then we have valt(λ(t) ·TA)= 1, det(λ1(t))= tr , det(λ2(t))= t s , det(λ3(t))= 1
and

rkG
α (TA)≤ µα(λ(t), TA)=

1 · r + 1 · s + ℓ · 0
1

= k = ncrk(A).
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On the other hand, let h = rkG
α (TA) and suppose that λ(t) ∈ G is a 1-parameter subgroup with

µα(λ(t), TA) = h. If h = min{p, q} then clearly ncrk(A) ≤ h, so we assume that h < min{p, q}.
Suppose ℓ ≥ p (the case ℓ ≥ q will go similarly). If det(λ3(t)) = te then we can define another 1-
parameter subgroup ρ(t)= (ρ1(t), ρ2(t), ρ3(t)) by ρ1(t)= teλ1(t), ρ2(t)= λ2(t) and ρ3(t)= I . Then
valt(ρ(t) · TA)≥ valt(λ(t) · TA), and we get

µα(ρ(t), TA)=
valt(det ρ1(t))+ valt(det ρ2(t))+ ℓ valt(det ρ3(t))

valt(ρ(t) · TA)

≤
pe + valt(det λ1(t))+ valt det(λ2(t))

valt(λ(t) · TA)

≤
valt(det λ1(t))+ valt(det λ2(t))+ ℓ valt(det λ3(t))

valt(λ(t) · TA)

= µα(λ(t), TA)

because ℓ ≥ p and valt(det λ3(t)) = e. We can replace λ(t) by ρ(t) and without loss of generality we
may assume that λ3(t)= I .

Let d := valt(λ(t) · TA). After base changes, we have

λ(t)=

t x(1)

. . .

t x(p)

 and ρ(t)=

t y(1)

. . .

t y(q)

 .

From ∑h+1
i=1 (x(i)+ y(h + 2 − i))

d
≤

∑p
i=1 x(i)+

∑q
j=1 y( j)

d
= µα(λ(t), TA)= h

follows that x(r + 1)+ y(s + 1) ≤ hd/(k + 1) < hd for some r, s with r + s = h. If a basis vector
[i, j, k] = [i]⊗ [ j]⊗ [k] appears in TA then x(i)+ y( j)≥ dk and therefore i ≤ r or j ≤ s. This means
that

TA ∈

r∑
i=1

[i] ⊗ K q
⊗ K m

+

s∑
j=1

K p
⊗ [ j] ⊗ K m

and ncrk(TA)≤ r + s = h = rkG
α (TA). □

2D. Semicontinuity of the G-stable rank. We will show that the G-stable rank is semicontinuous, which
means that for every r , the set of all tensors with G-stable rank ≤ r is Zariski closed.

Let us for the moment fix a 1-parameter subgroup λ(t) of G. We can choose bases in the vector spaces Vi

for i = 1, 2, . . . , d such that the matrix of λi (t) is diagonal, with diagonal entries t x(i,1), t x(i,2), . . . , t x(i,ni )

where x(i, 1)≥ x(i, 2)≥ · · · ≥ x(i, ni )≥ 0. Define

Z = {v ∈ V | µα(λ(t), v) < r}.
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The space Z is spanned by all basis vectors [i1, i2, . . . , id ] ∈ V with

d∑
i=1

αi

ni∑
j=1

x(i, j) < r(x(1, i1)+ x(2, i2)+ · · · + x(d, id)).

Let B = Bn1 × Bn2 × · · · × Bnd ⊆ G where Bk ⊆ GLk is the Borel group of upper triangular invertible
matrices. If [i1, i2, . . . , id ] lies in Z , and jk ≤ ik for all k, then [ j1, j2, . . . , jd ] lies in Z . This implies
that Z is stable under the action of B.

Lemma 2.10. The set G · Z =
⋃

g∈G g · Z is Zariski closed.

Proof. Consider the Zariski closed subset S ⊆ G/B × V defined by

S = {(gB, v) | g−1
· v ∈ Z}

and let π : G/B×V → V be the projection onto V . The flag variety G/B is projective, so π is a projective
morphism which maps closed sets to closed sets. In particular, G · Z = π(S) is Zariski closed. □

Theorem 2.11. For any weight α ∈ Rd
>0 and r ∈ R the sets X◦(rkG

α , r) = {v ∈ V | rkG
α (v) < r} and

X (rkG
α , r) = {v ∈ V | rkG

α (v) ≤ r} are finite unions of sets of the form G · Z where Z is a Borel-fixed
subspace. In particular, these sets are Zariski closed.

Proof. If rkG
α (v) < r , then there exists a 1-parameter subgroup λ(t) of G such that µα(λ(t), v) < r . If

Z = {w ∈ V | µα(λ(t), w) < r} then X◦(rkG
α , r) contains Z and G · Z . Since there are only finite many

Borel stable subspaces of V , we see that X◦(rkG
α , r) must be a finite union G · Z1 ∪ G · Z2 ∪ · · · ∪ G · Zs

where Z1, Z2, . . . , Zs are Borel stable subspaces. Since each G · Zi is closed, X◦(rkG
α , r) is closed.

Because there are only finitely many Borel stable subspaces, there are only finitely many possibilities for
X◦(rkG

α , s) where s ∈ R>0. There exists an ε > 0 such that X◦(rkG
α , s) is the same for all s ∈ (r, r + ε].

We have X (rkG
α , r)=

⋂
r<s≤r+ε X◦(rkG

α , s)= X◦(rkG
α , r + ε). □

3. Results on the G-stable rank

3A. Easy observations and a technical lemma.

Lemma 3.1. If v ̸= 0, then we have rkG
α (v)≥ min{α1, α2, . . . , αd}> 0. In particular, rkG(v)≥ 1.

Proof. Choose g(t) ∈ G(K [[t]]) with µα(g(t), v) = rkG
α (v). From v ̸= 0 follows that g(t) · v ̸= 0, say

valt(g(t) · v)= s > 0. Then we get
∑d

i=1 valt(gi (t))≥ s and∑d
i=1 αi valt(gi (t))
valt(g(t) · v)

≥ min{α1, . . . , αd}

∑s
i=1 valt(gi (t))

s
≥ min{α1, . . . , αd}.

It follows that rkG
α (v)≥ min{α1, . . . , αd}> 0. □
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Suppose that v = u ⊗w is nonzero with u ∈ V1 and w ∈ V2 ⊗· · ·⊗ Vd . We choose bases in V1, . . . , Vd

such that u is the first basis vector in V1. We can choose a one parameter subgroup λ(t) with

λ1(t)=


t

1
. . .

1


and λk(t)= 1nk for k = 2, 3, . . . , d. Then we have λ(t) · v = tv and µα(A(t), v)= α1. This shows that
rkG
α (v) ≤ α1. From Lemma 3.1 follows that rkG

α (v) ≤ α1. If v has slice rank 1 concentrated in the i-th
slice, then rkG

α (v)≤ αi ≤ max{α1, α2, . . . , αd}.

Corollary 3.2. If v has slice rank 1, then rkG(v)= 1.

Proof. If v has slice rank 1, rkG(v)= rkG
(1,...,1)(v)≤ max{1, . . . , 1} = 1 and rkG(v)≥ 1 by Lemma 3.1. □

Corollary 3.3. If v has rank 1 then rkG
α (v)= min{α1, . . . , αd}.

Proof. If v has rank 1 then rkG
α ≤ αi for every i and rkG

α ≥ min{α1, . . . , αd} by Lemma 3.1. □

Proposition 3.4. Suppose that v ∈ V1 ⊗ V2 ⊗ · · ·⊗ Vd and w ∈ W1 ⊗ W2 ⊗ · · ·⊗ We and v⊗w ∈ V1 ⊗

· · ·⊗ Vd ⊗ W1 ⊗· · ·⊗ We is the horizontal tensor product. We have rkG
α,β(v⊗w)= min{rkG

α (v), rkG
β (w)}.

Proof. Let G = GL(V1)×· · ·×GL(Vd) and H = GL(W1)×· · ·×GL(We). There exists g(t) ∈ G(K [[t]])
withµα(g(t), v)= rkα(v). For (g(t), 1)∈ (G×H)(K [[t]])we getµα,β((g(t), h(t)), v⊗w)= rkα(v). This
proves that rkG

α,β(v⊗w)≤ rkα(v). Similarly, we have rkG
α,β(v⊗w)≤ rkG

β (w), so we get rkG
α,β(v⊗w)≤

min{rkG
α (v), rkG

β (w)}.
Conversely, suppose that (g(t), h(t))∈ G×H(K [[t]]) satisfies µα,β((g(t), h(t)), v⊗w)= rkG

α,β(v⊗w).
Using that

valt((g(t), h(t)) · (v⊗w))= valt((g(t) · v)⊗ (h(t) ·w))= valt(g(t) · v)+ valt(h(t) ·w)

we get

µα,β(v⊗w)=

∑d
i=1 valt(det gi (t))+

∑e
j=1 valt(det h j (t))

valt(g(t) · v)+ valt(h(t) ·w)

≥ min
{∑d

i=1 valt(det gi (t))
valt(g(t) · v)

,

∑e
j=1 valt(det h j (t))

valt(h(t) ·w)

}
= min{rkG

α (v), rkG
β (w)}. □

We will need the following technical lemma to prove Proposition 3.6.

Lemma 3.5. If g(t), h(t) ∈ GLn(K [[t]]) then there exists u(t), g′(t), h′(t) ∈ GLn(K [[t]]) such that u(t)=
g′(t)h(t)= h′(t)g(t) and valt(det u(t))≤ valt(det g(t))+ valt(det h(t)).

Proof. We have

valt(det g(t))= dimK
K [[t]]n

g(t)K [[t]]n .
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The K [[t]]-module g(t)K [[t]]n
∩ h(t)K [[t]]n is a submodule of the free module K [[t]]n , so it is also free

of rank ≤ n. So there exists a matrix u(t) such that g(t)K [[t]]n
∩ h(t)K [[t]]n

= u(t)K [[t]]n . From
u(t)K [[t]]n

⊆ g(t)K [[t]]n follows that there exists a matrix h′(t) such that u(t)= h′(t)g(t). Similarly, we
find a matrix g′(t) with u(t)= g′(t)h(t).

We have

valt(det u(t))≤ dim
K [[t]]n

u(t)K [[t]]n = dim
K [[t]]n

g(t)K [[t]]n ∩ h(t)K [[t]]n

= dim
K [[t]]n

g(t)K [[t]]n + dim
g(t)K [[t]]n

g(t)K [[t]]n ∩ h(t)K [[t]]n

= valt(det g(t))+ dim
g(t)K [[t]]n

+ h(t)K [[t]]n

h(t)K [[t]]n

≤ valt(det g(t))+ valt(det h(t)). □

3B. The triangle inequality for the G-stable rank.

Proposition 3.6. For tensors v,w ∈ V we have rkG
α (v+w)≤ rkG

α (v)+ rkG
α (w).

Proof. Suppose that g(t), h(t) ∈ G(K [[t]]). If we replace t by te, then µα(g(t), v) does not change.
Without changing µα(g(t), v) and µα(h(t), w) we may assume that valt(g(t) ·v)= valt(h(t) ·w)= s > 0.
Then there exist u(t), g′(t), h′(t) ∈ G(K [[t]]) such that u(t)= h′(t)g(t)= g′(t)h(t) and valt(det ui (t))≤
valt(det gi (t))+ valt(det hi (t)) for all i by Lemma 3.5. We get

valt(u(t) · (v+w))= valt(h′(t)g(t) · v+ g′(t)h(t) ·w)

≥ min{valt(h′(t)g(t) · v), valt(g′(t)h(t) ·w}

≥ min{valt(g(t) · v), valt(h(t) ·w)}

= s

and
d∑

i=1

αi valt(det ui (t))≤

d∑
i=1

αi valt(det gi (t))+
d∑

i=1

αi valt(det hi (t))= sµα(g(t), v)+ sµα(h(t), w).

It follows that

µα(u(t), v+w)=

∑d
i=1 αi valt(det ui (t))

valt(u(t) · (v+w))
≤

sµα(g(t), v)+ sµα(h(t), w)
s

=µα(g(t), v)+µα(h(t), w).

Taking the infimum over all g(t) and h(t) gives rkG
α (v+w)≤ rkG

α (v)+ rkG
α (w). □

Corollary 3.7. For any tensor v ∈ V we have

rkG(v)≤ srk(v).

Proof. By definition, we can write v = v1 + v2 +· · ·+ vr where r = srk(v) and v1, v2, . . . , vr are tensors
of slice rank 1. Now rkG(v)= rkG(v1 +· · ·+vr )≤ rkG(v1)+· · ·+rkG(vr )= 1+· · ·+1 = r = srk(v). □
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3C. The additive property of the G-stable rank.

Proposition 3.8. If d ≥ 2, the G-stable rank is additive: we have rkG
α (v⊞w)= rkG

α (v)+ rkG
α (w).

Proof. From Proposition 3.6 follows that rkG
α (v⊞w) ≤ rkG

α (v⊞ 0)+ rkG
α (0 ⊞w) ≤ rkG

α (v)+ rkG
α (w).

Suppose that g(t) ∈ G(K [[t]]) with valt(g(t) · (v⊞w))= t s for some s > 0. Assume that the block form
of gi (t) with respect to the decomposition Vi ⊕ Wi is

gi (t)=

(
ai (t) bi (t)
ci (t) di (t)

)
.

The K [[t]]-module generated by the rows of a1(t) and c1(t) is a free submodule of K [[t]]n1 of rank n1,
where n1 = dim Vi . Using the Smith normal form, there exist invertible matrices in p(t)∈ GLn1+m1(K [[t]])
and q(t) ∈ GLn1(K [[t]]) such that (

a1(t)
c1(t)

)
= p(t)

(
r(t)

0

)
q(t)

where r(t) is an n1 × n1 diagonal matrix. It follows that

p(t)−1g1(t)=

(
r(t) ⋆

0 ⋆

)
.

So without loss of generality, we may assume that c1(t)=0. A similar argument shows that we may assume
without loss of generality that b2(t)= b3(t)= · · · = bd(t)= 0. If we project g(t) · v⊞w onto V , we get
a(t)·v+b(t)·w=a(t)·v because b2(t)=0. This implies that valt(a(t)·v)≥ s and

∑d
i=1 αi valt(det ai (t))≥

s rkG
α (v). Similarly, the projection of g(t) · v ⊞ w onto W is equal to c(t) · v + d(t) · w = d(t) · w

because c1(t)= 0. Therefore, we have valt(d(t) ·w)≥ s and
∑d

i=1 αi valt(det di (t))≥ s rkG
α (w). Since

det gi (t)= det ai (t) det di (t) because of the upper triangular or lower triangular form of gi (t), we get

s∑
i=1

αi valt(det gi (t))=

s∑
i=1

αi valt(det ai (t))+
s∑

i=1

αi valt(det di (t))≥ s(rkG
α (v)+ rkG

α (w)).

This proves that rkG
α (v⊞w)≥ rkG

α (v)+ rkG
α (w). □

4. The stable T-rank

4A. The G-stable rank and the T-stable rank. The G-stable α-rank of a tensor v is the maximum of
µα(λ(t), v) where λ(t) is a 1-parameter subgroup of G with valt(λ(t) · v) > 0. A 1-parameter subgroup
is contained in some maximal torus T (which itself is contained in some Borel subgroup B of G). We
can fix a maximal torus T and consider all 1-parameter subgroups contained in T . Choosing a maximal
torus of G corresponds to choosing a basis in each vector space Vi . So let us choose a basis in each Vi

so that we can identify GL(Vi ) with GLni . Let Tk ⊆ GLk be the subgroup of invertible diagonal k × k
matrices, and T = Tn1 × Tn2 × · · · × Tnd ⊆ G. Then T is a maximal torus of G.
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Definition 4.1. We define the α-stable T-rank rkT
α (v) as the infimum over all µα(λ(t), v) where λ(t) ∈

T (K [t]) is a 1-parameter subgroup of T with valt(λ(t) · v) > 0.

Since every 1-parameter subgroup is conjugate to a 1-parameter subgroup in the maximal torus, we get
the following corollary.

Corollary 4.2. We have
rkG
α (v)= inf

g∈G
rkT
α (g · v).

4B. The T-stable rank and linear programming. For a tensor v = (vi1,i2,...,id ) ∈ V = K n1×n2×···×nd we
define its support by

supp(v)= {(i1, . . . , id) | vi1,i2,...,id ̸= 0}.

As we will see, rkT
α (v) only depends on supp(v) and α. For a nonnegative integer k, let k = {1, 2, . . . , k}.

We will fix a support S ⊆ n1 × n2 × · · · × nd and compute the corresponding α-stable T-rank.

Definition 4.3. Let x(i, j) with 1 ≤ i ≤ d and 1 ≤ j ≤ ni be real variables and S ⊆ n1 × · · · × nd be a
support. The linear program LPα(S) asks to minimize

∑d
i=1 αi

∑ni
j=1 x(i, j) under the constraints:

(1) x(i, j)≥ 0 for i = 1, 2, . . . , d and 1 ≤ j ≤ ni .

(2)
∑d

i=1 x(i, si )≥ 1 for all s ∈ S.

Theorem 4.4. If v ∈ V has support S, then rkT
α (v) is the value of the linear program LPα(S).

Proof. Suppose λ(t) = (λ1(t), . . . , λd(t)) ∈ T (K [t]) is a 1-parameter subgroup, and λi (t) is diagonal
with entries t x(i,1), t x(i,2), . . . , t x(i,ni ) where x(i, j) is a nonnegative integer for all i, j . Also, assume that
valt(λ(t) · v) = q > 0 where v is a tensor with support S. This means that

∑d
i=1 αi x(i, si ) ≥ q for all

(s1, s2, . . . , sd) ∈ S. We have µα(λ(t), v) =
1
q

(∑d
i=1 αi

∑ni
j=1 x(i, j)

)
and rkT

α (v) is the infimum of all

µα(λ(t), v). If we replace x(i, j) by x(i, j)/q , then we have
∑d

i=1 αi x(i, si )≥ 1 for all (s1, . . . , sd) ∈ S
and µα(λ(t), v)=

∑d
i=1 αi

∑ni
j=1 x(i, j). This shows that rkT

α (v) is the infimum of
∑d

i=1 αi
∑ni

j=1 x(i, j)

under the constraints x(i, j) ≥ 0 for all i, j , and
∑d

i=1 x(i, si ) ≥ 1 for all s ∈ S for all i, j . This is the
linear program LPα(S), except that the numbers x(i, j) have to be rational. However, since the constraints
are inequalities with coefficients in Q, there exists an optimal solution over Q. □

Example 4.5. Consider the tensor

v = [2, 1, 1] + [1, 2, 1] + [1, 1, 2] ∈ K 2×2×2
= K 2

⊗ K 2
⊗ K 2.

with support S = {(2, 1, 1), (1, 2, 1), (1, 1, 2)}. We have to solve the following linear program LP(S)=

LP(1,1,1)(S): minimize
∑3

i=1
∑2

j=1 x(i, j) under the constraints x(i, j)≥ 0 for i = 1, 2, 3 and j = 1, 2 and

x(1, 2)+ x(2, 1)+ x(3, 1)≥ 1

x(1, 1)+ x(2, 2)+ x(3, 1)≥ 1

x(1, 1)+ x(2, 1)+ x(3, 2)≥ 1
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An optimal solution is x(1, 1)= x(2, 1)= x(3, 1)= 1
2 and x(1, 2)= x(2, 2)= x(3, 2)= 0. So the optimal

value is rkT (v) = 3 ·
1
2 =

3
2 . It follows that rkG(v) ≤ rkT (v) ≤

3
2 . It is easy to see that srk(v) > 1 (and

thus equal 2). We will show that rkG(v)=
3
2 .

Suppose that rkG(v) < 3
2 . Then there exists a tensor w ∈ K 2×2×2 in the same G-orbit as v such

that rkT (w) < 3
2 . Let S′

= supp(w) ⊆ 2 × 2 × 2 be the support of w. Also assume that {x(i, j)} is
an optimal solution for the linear program LP(S′). By permuting coordinates, we may assume that
x(i, 1)≥ x(i, 2) for i = 1, 2, 3. The support S′ is not contained in {1}× {1, 2}× {1, 2} because otherwise
w and v would have slice rank 1. Therefore, (2, i, j) ∈ S′ for some i, j . Because of the ordering of the
variables x(i, j), (2, 1, 1) ∈ S′. Similarly, (1, 2, 1), (1, 1, 2) ∈ S′. Now supp(w)= S′

⊇ S = supp(v), so
rkT (w)≥ rkT (v)=

3
2 . Contradiction.

4C. Comparison between the G-stable rank and the slice rank. Besides the slice rank, we will also define
a slice rank relative to a maximal torus T , or equivalently, relative to bases choices for V1, V2, . . . , Vd .

Definition 4.6. We say that a tensor v has T-slice rank 1 if v is contained in a space of the form

Vi, j = V1 ⊗ V2 ⊗ · · · ⊗ Vi−1 ⊗ [ j] ⊗ Vi+1 ⊗ · · · ⊗ Vd .

Now the T-slice rank srkT (v) of an arbitrary tensor v is the smallest nonnegative integer r such that v is a
sum of r tensors of T-slice rank 1.

The following result is clear from the definition of slice rank:

Corollary 4.7. We have

srk(v)= min
g∈G

srkT (g · v).

The T-slice rank of v depends only on its support S = supp(v) and can be expressed in terms of integer
solutions of the linear program LP(S).

Proposition 4.8. The T-slice rank srkT (v) is the smallest possible value of
∑d

i=1
∑ni

j=1 x(i, j) where the
x(i, j) satisfy the constraints:

(1) x(i, j) ∈ {0, 1} for i = 1, 2, . . . , d and 1 ≤ j ≤ ni .

(2)
∑d

i=1 x(i, si )≥ 1 for all s ∈ S.

Proof. Suppose that x(i, j) ∈ {0, 1} for all i, j . Define

V (x)=

∑
i, j

x(i, j)=1

Vi, j .

A vector [s1, s2, . . . , sd ] lies in V (x) if and only if
∑d

i=1 x(i, si ) ≥ 1. So a tensor v lies in V (x) if and
only if

∑d
i=1 x(i, si ) ≥ 1 for all s ∈ supp(v). By definition, srkT (v) is the smallest possible value of∑

i, j x(i, j) such that v ∈ V (x). □
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It is now easy to see that rkT (v) ≥
1
d srkT (v) (and this implies rkG(v) ≥

1
d srk(v)): If x(i, j) is a

solution to the linear program LP(S) where S = supp(v), then we define x ′(i, j) ∈ {0, 1} such that
x ′(i, j) = 1 if x(i, j) ≥

1
d and x ′(i, j) = 0 otherwise. If s ∈ S then we have

∑d
i=1 x(i, si ) ≥ 1. It

follows that x(i, si ) ≥
1
d for some i and x ′(i, si ) = 1 for some i . Therefore,

∑d
i=1 x ′(i, si ) ≥ 1. Now

srkT (v)≤
∑

i, j x ′(i, j)≤
∑

i, j dx(i, j)= d rkT (v). With a more refined argument, we can improve this
bound.

Proposition 4.9. For d ≥ 2 we have rkT (v)≥
2
d srkT (v) and therefore rkG(v)≥

2
d srk(v).

Proof. Suppose that x(i, j) is an optimal solution to the linear program. Note that 0 ≤ x(i, j)≤ 1 for all
i, j . We define functions f1, f2, . . . , fd : [0, 1] → R by

fi (α)= |{ j | x(i, j)≥ α}|.

We have
∫ 1

0 fi (α) dα =
∑

j x(i, j). In particular,
∫ 1

0 ( f1(α) + · · · + fd(α)) dα =
∑

i, j x(i, j). Let
si = 2i/(d(d − 1)) for i = 0, 1, 2, . . . , d − 1. Note that s0 + s1 + · · · + sd−1 = 1. We define a closed
piecewise linear curve γ = (γ1, . . . , γd) : [0, d] → Rd with γ (d) = γ (0) = [s0, s1, . . . , sd−1], γ (1) =

[s1, s2, . . . , sd−1, s0], . . . , γ (d − 1) = [sd−1, s0, . . . , sd−2] such that γ is linear on each of the intervals
[i, i + 1], i = 0, 1, . . . , d − 1. On the intervals [0, 1], [1, 2], . . . , [d − 1, d], γi (t) goes through the
intervals [s0, s1],[s1, s2],. . . , [sd−2, sd−1],[sd−1, s0] in some order. So 1

d

∫ d
0 fi (γi (t)) dt is the average of

the averages of fi of each of these d intervals. This is equal to the average value of fi (t) on the interval
[0, sd−1] =

[
0, 2

d

]
:

1
d

∫ d

0
fi (γi (t)) dt =

d
2

∫ 2/d

0
fi (t) dt ≤

d
2

∫ 1

0
fi (t) dt =

d
2

ni∑
j=1

x(i, j).

It follows that

1
d

∫ d

0

( d∑
i=1

fi (γi (t))
)

dt ≤
d
2

d∑
i=1

ni∑
j=1

x(i, j)=
d
2

rkT (v).

Since the minimal value of
∑d

i=1 fi (γi (t)) is at most the average, there exists a t ∈ [0, d] such that∑d
i=1 fi (γi (t))≤

d
2 rkT (v). Now define x ′(i, j)= 1 if x(i, j)≥ γi (t) and x ′(i, j)= 0 if x(i, j) < γi (t).

If s = (s1, s2, . . . , sd) ∈ supp(v), then
∑d

i=1 x(i, si )≥ 1. Since
∑d

i=1 γi (t)= 1, we have x(i, si )≥ γi (t)
for some i and

∑d
i=1 x ′(i, si )≥ 1. We conclude that

srkT (v)≤

n∑
i=1

ni∑
j=1

x ′(i, j)=

d∑
i=1

fi (γi (t))≤
d
2

rkT (v).

Finally, we get

srk(v)= inf
g∈G

srkT (g · v)≤
d
2

inf
g∈G

rkT (g · v)=
d
2

rkG(v). □
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4D. The dual program and the T-stable rank.

Definition 4.10. For a support set S, the dual program LP∨
α (S) is to maximize

∑
s∈S y(s) under the

constraints:

(1) y(s)≥ 0 for all s ∈ S.

(2) For all i, j we have ∑
s∈S
si = j

y(s)≤ αi .

If x and y are optimal solutions for LPα(S) and LP∨
α (S) respectively, then we have

∑
s∈S

y(s)=

d∑
i=1

αi

ni∑
j=1

x(i, j)= rkT
α (v)

and

(1) for all i, j , we have ∑
s∈S
si = j

y(s)= αi or x(i, j)= 0;

(2) for all s ∈ S we have
∑d

i=1 x(i, si )= 1 or y(s)= 0.

4E. The supermultiplicative property of the T-stable rank. If v ∈ V = V1 ⊗ V2 ⊗ · · · ⊗ Vd and w ∈

W1 ⊗W2 ⊗· · ·⊗Wd then we can consider the “vertical” tensor product v⊠w ∈ (V1 ⊗W1)⊗· · · (Vd ⊗Wd).

Proposition 4.11. We have rkT
αβ(v⊠w)≥ rkT

α (v) rkT
β (w), where α= (α1, . . . , αd), β = (β1, . . . , βd) and

αβ = (α1β1, . . . , αdβd).

Proof. Let S = supp(v), S′
= supp(w), y(s), s ∈ S be an optimal solution for theLP∨

α (v) and y′(s), s ∈ S′

be an optimal solution for LP∨

β (w). The tensor v⊠w has support S × S′. For the dual program for v⊠w
we have to maximize

∑
s∈S,s′∈S′ Y (s, s ′) under the constraints Y (s, s ′)≥ 0 for all s ∈ S, s ′

∈ S′ and∑
s∈S,s′

∈S′

si = j,s′

i = j ′

Y (s, s ′)≤ α jβ j ′

for all i, j, j ′. One solution for this linear program is Y (s, s ′)= y(s)y′(s ′). We get

rkT
αβ(v⊠w)≥

∑
s∈S

∑
s′∈S′

Y (s, s ′)=

∑
s∈S

y(s)
∑
s′∈S′

y(s ′)= rkT
α (v) rkT

β (w). □

5. G-stable rank over C

5A. Kempf–Ness theory. We recall some of the main results from Kempf–Ness theory [Kempf and Ness
1979; Woodward 2010]. Suppose that G is an complex reductive algebraic group with a maximal compact
subgroup C and V is a representation of G. We fix a Hermitian inner product ⟨ · , · ⟩ on V that is invariant
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under C , i.e., ⟨g · v, g ·w⟩ = ⟨v,w⟩ for all v,w ∈ V and g ∈ C . Let c and g be the Lie algebras of C and
G respectively, and let c⋆ be the dual space of c. We have g = c⊕ ic. For v ∈ V , we define a morphism
ψv : G → R by g 7→ ∥g · v∥2

= ⟨g · v, g · v⟩. The differential (dψv)I : g → R of ψv at the identity I ∈ G
is given by

(dψv)I : ξ 7→ ⟨ξv, v⟩ + ⟨v, ξv⟩ ∈ R.

Because ∥g · v∥2 is constant on C , (dψv)I vanishes on c. So ⟨v, ξv⟩ = −⟨ξv, v⟩ for ξ ∈ c. If ξ ∈ c then
we have (dψv)I (iξ)= ⟨iξv, v⟩+⟨v, iξv⟩ = i⟨ξv, v⟩− i⟨v, ξv⟩ = 2i⟨ξv, v⟩. For the following result, see
[Woodward 2010, Corollary 5.2.5].

Theorem 5.1 (Kempf and Ness). An orbit G ·v is closed if and only there existsw ∈ G ·v with (dψw)I = 0.

Let V = V1 ⊗ V2 ⊗ · · · ⊗ Vd with Vi = Cni . For v ∈ V , let 8i (v) ∈ (V1 ⊗ · · · ⊗ V̂i ⊗ · · · ⊗ Vd)
⋆
→ Vi

be the i-th flattening of v.

5B. A formula for the G-stable rank over C. We will use Kempf–Ness theory to prove the following
theorem:

Theorem 5.2. For α ∈ R>0 we have

rkG
α (v)= sup

g∈G
min

i

αi∥g · v∥2

∥8i (g · v)∥2
σ

.

For the proof of the theorem, we need the following lemma:

Lemma 5.3. Suppose that β ∈ Qd
>0, r =

p
q with p, q positive integers, qβ ∈ Zd and v ∈ V = V1 ⊗ V2 ⊗

· · · ⊗ Vd . As in Proposition 2.3, let

W = (V ⊗p
⊗ det−qβ)⊕ V n1

1 ⊕ V n2
2 ⊕ · · · ⊕ V nd

d .

and w = (v⊗p
⊗ 1, u1, . . . , ud). Define ψw : G → W by ψw(g)= g ·w. Then we have (dψw)I = 0 if and

only if

p∥v∥2p−28i (v)8
⋆
i (v)− qβi∥v∥

2p Ini + ui u⋆i = 0

for all i .

Proof. The Hermitian scalar products on V1, V2, . . . , Vd induce Hermitian scalar products on V n1
1 , . . . , V nd

d ,
V , V ⊗p, V ⊗p

⊗ det−qβ and W in a natural way. We have

∥w∥
2
= ∥v∥2p

+

d∑
i=1

∥ui∥
2

and

ψw(g)= ∥g ·w∥
2
= ∥g · v∥2p det−2qβ(g)+

d∑
i=1

∥gi ui∥
2.
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The Lie algebra of G can be identified with

g = End(V1)⊕ End(V2)⊕ · · · ⊕ End(Vd).

The Lie algebra c consists of all d-tuples (ξ1, . . . , ξd) of skew-Hermitian matrices, and ic consists
of d-tuples of Hermitian matrices. We compute the differential (dψw)I . Note that GL(Vi ) acts on
the i-th mode. If we view v as the flattened tensor 8i (v), then gi acts just by left multiplication:
8i (gi ·v)= gi8i (v). Let Tr(·) denote the trace. The differential of gi 7→ ∥gi ·v∥

2
= Tr(gi8i (v)8

⋆
i (v)g

⋆
i )

at the identity is given by ξi ∈ End(Vi ) 7→ Tr(ξi8i (v)8
⋆
i (v)) + Tr(8i (v)8

⋆
i (v)ξ

⋆
i ). If we restrict to

Hermitian ξi , then this is equal to 2 Tr(ξi8i (v)8
⋆
i (v)). The differential of ∥g · v∥2 restricted to ic ⊆ g is

(ξ1, . . . , ξd) 7→ 2
∑d

i=1 Tr(ξi8i (v)8
⋆
i (v)). The differential of gi 7→ det(gi ) at the identity is ξi 7→ Tr(ξi ).

Combining these results with the product rule of differentiation, we get for ξ ∈ ic that

(dφw)I (ξ)=

d∑
i=1

(2p∥v∥2p−2 Tr(ξi8i (v)8
⋆
i (v))− 2qβi q∥v∥2p Tr(ξi )+ 2 Tr(ξi ui u⋆i ))

=

d∑
i=1

⟨ξi , ∥v∥
2p−28i (v)8

⋆
i (v)− 2qβi∥v∥

2p Ini + 2ui u⋆i ⟩.

We have (dφw)I = 0 if and only if

2p∥v∥2p−28i (v)8
⋆
i (v)− 2qβi∥v∥

2p Ini + 2ui u⋆i = 0

for all i . □

Proof of Theorem 5.2. Let us define

fα(v)= sup
g∈G

min
i

αi∥g · v∥2

∥8i (g · v)∥2
σ

Suppose that r ∈ Q and fα(v)≤ r . Assume that β ∈ Qd
>0 with βi > αi for all i . We can write r = p/q

such that p, q ∈ Z are positive and qβi ∈ Z for all i . From fα(v)≤ r follows that

αi∥g · v∥2 Ini − r8i (g · v)8⋆i (g · v)

is nonnegative definite for all i . This implies that

βi∥g · v∥2 Ini − r8i (g · v)8⋆i (g · v)

is positive definite for all i . Multiplying with p∥g · v∥2p−2 we get that

pβi∥g · v∥2p Ini − q∥g · v∥2p−28i (g · v)8⋆i (g · v)

is positive definite and equal to ui u⋆i for some ui ∈ V ni
i . This shows that (dψg·w)I = 0. By Theorem 5.1,

the G-orbit of w is closed. By Proposition 2.3, we have rkG
β (v) ≥ r . Because this is true for every

rational β > α, we get rkG
α (v)≥ r . Since this is true for any r ∈ Q with r ≥ fα(v), we can conclude that

rkG
α (v)≥ fα(v).
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Suppose that β ∈ Qd
>0 and βi < αi for all i . Let r = rkG

β (v) < rkG
α (v). We can write r =

p
q such that p,

q are positive integers, and qβ ∈ Zd . We can choose an invertible ui ∈ V ni
i for all i . Now

w = (v⊗p
⊗ 1, u1, u2, . . . , ud) ∈ (V ⊗p

⊗ det−qβ)⊕ V n1
1 ⊕ V n2

2 ⊕ · · · ⊕ V nd
d

is G-semistable by Proposition 2.3. So there exists a nonzero w′
∈ G ·w with (dψw′)I = 0. We can write

w′
= ((v′)⊗d , u′

1, . . . , u′

d). Using Lemma 5.3, we get

p∥v′
∥

2p−28i (v
′)8⋆i (v

′)− qβi∥v
′
∥

2p Ini + u′

i (u
′

i )
⋆
= 0.

So

qβi∥v
′
∥

2p Ini − p∥v′
∥

2p−28i (v
′)8⋆i (v

′)

is nonnegative definite for all i . Therefore,

qαi∥v
′
∥

2p Ini − p∥v′
∥

2p−28i (v
′)8⋆i (v

′)

is positive definite for all i .
Since w′ lies in G ·w, there exists a g ∈ G such that

qαi∥g · v∥2p Ini − p∥g · v∥2p−28i (g · v)8⋆i (g · v)

is positive definite for all i . It follows that

∥8i (g · v)∥2
σ = ∥8i (g · v)8⋆i (g · v)∥σ ≤

qαi∥g · v∥2p

p∥g · v∥2p−2 =
αi∥g · v∥2

r

for all i and

min
i

αi∥g · v∥2

∥8i (g · v)∥2
σ

≥ r.

This shows that fα(v)≥ r = rkG
β (v). Since β ∈ Qd

>0 was arbitrary with β < α, we obtain fα(v)≥ rkG
α (v).

We conclude that fα(v)= rkG
α (v). □

5C. The supermultiplicative property of the G-stable rank in characteristic 0.

Theorem 5.4. If v ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vd and w ∈ W1 ⊗ W2 ⊗ · · · ⊗ Wd where V1, . . . , Vd ,W1, . . . ,Wd

are C-vector spaces and α, β ∈ Rd
>0, then we have

rkG
αβ(v⊠w)≥ rkG

α (v) rkG
β (w).

Proof. if g ∈ GL(V1)× · · · × GL(Vd) and h ∈ GL(W1)× · · · × GL(Wd) then we can consider g ⊠ h ∈

GL(V1 ⊗ W1)× · · · × GL(Vd ⊗ Wd). We have

αiβi∥(g ⊠ h) · (v⊠w)∥2

∥8i ((g ⊠ h) · (v⊠w))∥σ
=
αiβi∥((g · v)⊠ (h ·w)∥2

∥8i ((g · v)⊠ (h ·w))∥σ
=

αi∥g · v∥2βi∥h ·w∥
2

∥8i (g · v)∥σ∥8i (h ·w)∥σ
.
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Therefore, we get

min
i

αiβi∥(g ⊠ h) · (v⊠w)∥2

∥8i ((g ⊠ h) · (v⊠w))∥σ
≥ min

i

αi∥g · v∥2

∥8i (g · v)∥σ
· min

j

β j∥h ·w∥
2

∥8 j (h ·w)∥σ
.

Taking the supremum over all g and h now gives rkG
αβ(v⊠w)≥ rkG

α (v) rkG
β (w). □

6. Application of the G-stable rank to the cap set problem

The cap set problem asks for a largest possible subset S ⊆ Fn
3 without an arithmetic progression. Let c(n)

be the largest possible cardinality of such a set. It was recently proved by Ellenberg and Gijswijt that
c(n)= O(θn), where θ =

3
8(207 + 33

√
33)1/3 < 2.756. Tao gave an elegant formulation of the proof of

this bound using the notion of slice rank. Here we will use a similar approach, using the G-stable rank
instead of the slice rank to get an explicit bound for all n which the same asymptotic behavior. We view
K 3 as the vector space with basis [0], [1], [2] where we view 0, 1, 2 as elements in F3. More generally,
we view K 3n

as the vector space with basis [a], a ∈ Fn
3 . Note that a, b, c form an arithmetic progression

in Fn
3 if and only if a + b + c = 0. Consider the tensor

vn =

∑
(a,b,c)∈Fn×3

3
a+b+c=0

[a] ⊗ [b] ⊗ [c] =

∑
(a,b,c)∈Fn×3

3
a+b+c=0

[a, b, c] ∈ K 3n
⊗ K 3n

⊗ K 3n
.

Suppose that S ⊂ Fn
3 is a set without arithmetic progression. Then we have

w =

∑
(a,b,c)∈S3

a+b+c=0

[a, b, c] ∈ K 3
⊗ K 3

⊗ K 3
=

∑
a∈S

[a, a, a].

The tensor w is a projection of v and lies in the orbit closure of v. In particular, we have rkG(w)≤ rkG(v).
Since w is a direct sum of |S| rank 1 tensors, we get rkG(w) ≥ |S| by Proposition 3.8. So we have
rkG(v)≥ rkG(w)≥ |S|.

We will work over the field K = F3. For a function f : Fn
3 → F3 we define

⟨ f ⟩ =

∑
a∈Fn

3

f (a)[a] ∈ K 3n
.

In particular, we have ⟨1⟩ = [0] + [1] + [2], ⟨x⟩ = [1] + 2[2] = [1] − [2] and ⟨x2
⟩ = [1] + [2]. A basis

of K 3n
is formed by taking all ⟨p(x)⟩ where p(x) = p(x1, . . . , xn) is a polynomial of degree ≤ 2 in

each of the variables x1, x2, . . . , xn . With respect to the basis ⟨1⟩, ⟨x⟩, ⟨x2
⟩, we have vn = ⟨ f ⟩ where

f : Fn
3 × Fn

3 × Fn
3 → F3 is given by

f (x, y, z)=

{
1 if x + y + z = 0;

0 otherwise.
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For n = 1 we have v1 = ⟨ f ⟩ where f : F3 × F3 × F3 → F3 is given by f (x, y, z) = 1 − (x + y + z)2 =

1 − x2
− y2

− z2
+ x + y + z. So we have

v1 = ⟨1, 1, 1⟩ − ⟨x2, 1, 1⟩ − ⟨1, x2, 1⟩ − ⟨1, 1, x2
⟩ + ⟨1, x, x⟩ + ⟨x, 1, x⟩ + ⟨x, x, 1⟩.

The support of S with respect to the basis ⟨1⟩, ⟨x⟩, ⟨x2
⟩ is

{(0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

An optimal solution to the linear program is x(1, 0)= x(2, 0)= x(3, 0)= 1
2 , x(1, 1)= x(2, 1)= x(3, 1)= 1

4
and x(1, 2)= x(2, 2)= x(3, 2)= 0, which gives rkG(v)≥ rkT (v)=

∑
i, j x(i, j)= 9

4 = 2.25. An optimal
solution for the dual program is y(2, 0, 0) = y(0, 2, 0) = y(0, 0, 2) =

1
4 and y(0, 1, 1) = y(1, 0, 1) =

y(1, 1, 0)=
1
2 and y(0, 0, 0)= 0.

The support of the tensor v⊠n
= v⊠ v⊠ · · ·⊠ v is contained in the set

Tn = {(λ, µ, ν) ∈ ({0, 1, 2}
n)3 | |λ| ≤ 2n, |µ| ≤ 2n, |ν| ≤ 2n}.

We will give a solution to the linear program LP(Sn) that we conjecture to be optimal. Whether optimal
or not, it will give an upper bound for the G-stable rank of v⊠n . Suppose that t0, t1, t2, . . . , t2n ≥ 0 are
numbers such that ti + t j + tk ≥ 1 whenever i + j +k ≤ 2n. If we define x(i, λ)= t|λ| for all λ ∈ {0, 1, 2}

n ,
and i = 1, 2, 3 then we have x(1, λ)+ x(2, µ)+ x(3, ν)= t|λ| + t|µ| + t|ν| ≥ 1, so we have a solution to
the linear program. So we get

rkG(v)≤

3∑
i=1

∑
λ

x(i, λ)= 3
∑
λ

t|λ| = 3
2n∑

i=0

fn,i ti

where fn,i is the number of solutions to a1 + a2 + · · · + an = d with a1, a2, . . . , an ∈ {0, 1, 2}. So fn,i is
the coefficient of x i in (1 + x + x2)n . To choose the t optimally, we have to solve a linear program by
minimizing 3

∑2n
i=0 fn,i ti under the constraints:

(1) ti + t j + tk ≥ 1 if i + j + k ≤ 2n.

(2) ti ≥ 0 for all i .

The optimal solutions for the ti are given in Table 2.
In Table 2, the column UB gives the value of 3

∑2n
i=0 fn,i ti which is an upper bound for the G-stable

rank and the cardinality of a cap set in Fn
3 . The column labeled “best cap set” gives the cardinality of

the largest known cap set in Fn
3 . The column EG gives the Ellenberg–Gijswijt upper bound, which is

3
∑⌊(2/3)n⌋

i=0 fn,i . This estimate relies on the fact that if i, j, k are nonnegative integers with i + j +k ≤ 2n,
then it follows that min{i, j, k}≤

⌊ 2n
3

⌋
. But one can say something stronger, namely i ≤

⌊ 2n
3

⌋
, j ≤

⌊ 2n−1
3

⌋
or k ≤

⌊2n−2
3

⌋
. This observation gives a better bound that is still based on the slice rank in the column

labeled EG’. In the comment section of [Tao 2016], Fedor Petrov gives a refined argument to improve on
that of Ellenberg and Gijswijt to 2

∑⌊(2/3)n⌋

i=0 fn,i , an improvement by a factor 2
3 . This bound is given in the

column labeled P. In fact, the discussion of Petrov and Tao shows that we get an even better upper bound if
we minimize

∑m
i=0 fn,i +

∑2n−2−2m
i=0 fn,i over all m with 0 ≤ m < n. This bound is given in the column P’.
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n 0 1 2 3 4 5 6 UB P’ P EG’ EG best cap set

1
f1,i 1 1 1 0 0 0 0

2 1
4 2 2 3 3 2ti 1

2
1
4 0 0 0 0 0

2
f2,i 1 2 3 2 1 0 0

6 4 6 7 9 4ti 3
5

2
5

1
5 0 0 0 0

3
f3,i 1 3 6 7 6 3 1

15 11 20 18 30 9ti 1 2
3

1
3 0 0 0 0

4
f4,i 1 4 10 16 19 16 10

39 30 30 45 45 20ti 1 3
4

1
2

1
4 0 0 0

5
f5,i 1 5 15 30 45 51 45

105 72 102 123 153 45ti 1 4
5

3
5

2
5

1
5 0 0

6
f6,i 1 6 21 50 90 126 141

274 196 336 324 504 112ti 1 1 1 2
3

1
3 0 0

Table 2. Optimal solutions for the ti .

In the table of Section 1E we have computed the optimal value of 3
∑2n

i=0 fn,i ti rounded down to the
nearest integer for n ≤ 20. This bound is an upper bound for the cardinality of a cap set in Fn

3 .
Looking at optimal solutions for small n, we make the following conjecture:

Conjecture 6.1. The optimal solution of the linear program for t0, t1, t2, . . . , t2n is as follows:

p



1, 1, . . . , 1︸ ︷︷ ︸
(2n−3)/3

, 2
3 ,

1
3 , 0, 0, . . . if n ≡ 0 mod 3,

1, 1, . . . , 1︸ ︷︷ ︸
(2n−5)/3

, 3
4 ,

1
2 ,

1
4 , 0, 0, . . . if n ≡ 1 mod 3,

1, 1, . . . , 1︸ ︷︷ ︸
(2n−7)/3

, 4
5 ,

3
5 ,

2
5 ,

1
5 , 0, 0, . . . if n ≡ 2 mod 3.

7. Conclusion and further directions

The G-stable rank is a new notion of rank for tensors. Up to a constant it is equal to the slice rank, but it is
more refined in the sense that it can take noninteger values, and unlike the slice rank it is supermultiplicative
with respect to vertical tensor products. As an illustration, we showed that the G-stable rank can be used
to improve upper bounds for the cardinality of cap sets. Zhi Jiang recently proved Conjecture 6.1 in
[Jiang 2021]. He also improved the asymptotic upper bound of Ellenberg and Gijswijt to suggest an upper
bound of the form Cθn/

√
n where C is some explicit constant. Since the asymptotic subrank of the cap

set tensor is θ , the approach with G-stable rank cannot give an upper bound O(γ n) where γ < θ .
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Besides algebraic applications of tensor decompositions there are also many numerical applications such
as psychometrics [Tucker 1963; 1964; 1966; Carroll and Chang 1970; Harshman 1970] and chemometrics
[Appellof and Davidson 1981]. For more details and references, see the survey article [Kolda and
Bader 2009] or the books [Kroonenberg 2008; Landsberg 2012]. Formula (2) allows us to compute
or approximate the G-stable rank for real or complex tensors using optimization. Future directions of
research include algorithms for approximating the G-stable rank of a tensor, or to approximate a given
tensors by tensors of low G-stable rank and apply these to such tasks as denoising, dimension reduction
and tensor completion.
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