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Abstract—We revisit the problem of constructing explicit pseu-
dorandom generators that fool with error ε degree-d polynomials
in n variables over the field Fq , in the case of large q. Previous
constructions either have seed length ≥ 2d log q, and thus are only
non-trivial when d < log n, or else rely on a seminal reduction
by Bogdanov (STOC 2005). This reduction yields seed length not
less than d4 log n + log q and requires fields of size q ≥ d6/ε2;
and explicit generators meeting such bounds are known.

Departing from Bogdanov’s reduction, we develop an alge-
braic analogue of the Bogdanov-Viola paradigm (FOCS 2007,
SICOMP 2010) of summing generators for degree-one polyno-
mials. Whereas previous analyses of the paradigm are restricted
to degree d < log n, we give a new analysis which handles
large degrees. A main new idea is to show that the construction
preserves indecomposability of polynomials. Apparently for the
first time in the area, the proof uses invariant theory.

Our approach in particular yields several new pseudorandom
generators. In particular, for large enough fields we obtain seed
length O(d log n+log q) which is optimal up to constant factors.
We also construct generators for fields of size as small as O(d4).
Further reducing the field size requires a significant change in
techniques: Most or all generators for large-degree polynomials
rely on Weil bounds; but such bounds are only applicable when
q > d4.

Index Terms—pseudorandom generator, polynomial, invariant
theory, algebraic geometry, sum

A pseudorandom generator for degree-d polynomials over

the field Fq in n variables with error ε is an explicit map

P : S → F
n
q that “ε-fools” any such polynomial g, that is, the

distributions g(U) and g(P (U)) have statistical distance (or

error) at most ε. Here U denotes the uniform distribution over

the appropriate domain (Fn
q in the first occurrence and S in

the second). The seed length of P is log2 |S|. The minimum

possible seed length is Ω(d log(n/d)+log q+log 1/ε), at least

when d < n0.99 and q is prime [1], [2]. Explicit constructions

of generators (i.e., upper bounds on the seed length) have

been intensely studied for at least 30 years. Two main lines of

work exist. The first applies to any field [1], [3]–[8]. The last

paper gives seed length O(log n+ 2d log q/ε) · d which is the

best available for small fields such as F2. The corresponding

generators are obtained within the Bogdanov-Viola paradigm

[1]: to fool polynomials of degree d, sum � ≥ d independent

copies of generators for degree-one polynomials. While the

parameters given by the analysis in [8] are non-trivial only

for d ≤ log n, it is unknown whether the paradigm also works
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for larger degrees. If it did it would yield a breakthrough in

complexity theory. For example, it would imply generators

for small constant-depth circuits with parity gates, thanks to a

well-known approximation due to Razborov [9].

The second lines of works applies only to fields of large

size q � d, but can handle much larger degrees. Here

Bogdanov’s seminal paper [10] laid a paradigm that reduces

constructing pseudorandom generators to constructing hitting-
set generators for polynomials, an easier task. Bogdanov’s

paper was followed by a series of better and better construc-

tions of hitting-set generators by Lu [11], Cohen and Ta-Shma

[12], and Guruswami and Xing [13]; see also [14] for earlier

related work by Klivans and Spielman. Optimal hitting-set

constructions are now known; in combination with Bogdanov’s

reduction they yield the following pseudorandom generators.

Theorem 1. [ [10]+ [13]+( [11] or [14])] There exist explicit
pseudorandom generator that fool degree-d polynomials in
n variables over Fq with seed length O(d4 log n + log q),
provided q ≥ O(d6/ε2).

The notation O(.) and Ω(.) denotes absolute constants. To

connect with previous expressions for the seed length, note

that adding a log 1/ε term to the seed length in Theorem 1

does not change it since q ≥ 1/ε.
The parameters in Theorem 1 are essentially the best one

can achieve using the reduction in [10], as we now explain.

That reduction proceeds by showing that restricting a polyno-

mial g onto a “good” plane preserves its output distribution

with high probability. Once a good plane is found, one can then

just pick a uniform element from the plane, which only costs

two field elements. To find a good plane, [10] relies on results

by Kaltofen [15] showing that (the coefficients of) planes that

are bad for g are zeroes of a low-degree polynomial Kg . One

can then use a hitting set to find a good plane. A bottleneck

in this reduction is that the degree of Kg is at least d4. So

one needs a hitting-set generator for polynomials of degree

at least d4, resulting in the d4 factor in the final seed length.

The same loss arises in earlier work dealing with polynomials

over complex numbers, see [15] for discussion. Over fields of

large characteristic the degree can be improved from O(d4)
to O(d2), which is known to be optimal, see [16]. Thus, this

approach does not yield seed length less than d2 log n. For

related reasons, the reduction in [10] requires the field size to

be at least d6.
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Constructions of pseudorandom generators in the two lines

of research above have followed different paradigms. By

contrast, we shall prove that the [1] paradigm works also for

large-degree polynomials, at least as long as the field is large

enough. This in particular yields pseudorandom generators

with improved parameters, stated next.

Theorem 1. There are explicit pseudorandom generators that
fool with error ε degree-d polynomials in n variables over Fq

with seed length O(d · m · log(dk + dm) + log q), provided
that q ≥ O(dk)4/ε2, for any integers m and k such that(
m+k−2
m−1

) ≥ n.
In particular we can have either
(1) seed length O(d log(dn) + log q) provided that q ≥

O(d4n0.001)/ε2, or
(2) seed length O(d log n·log(d log n)+log q) provided that

q ≥ O(d log n)4/ε2.

Item (1) achieves optimal seed length up to constant factors,

when d < n0.99. In particular it improves on the Ω(d4 log n)
seed lengths of previous constructions. The field size improves

on the Ω(d6/ε2) field size of previous constructions (Theorem

1) when say d > n0.001. This item is obtained by suitably

setting m = O(1) and k = nΩ(1).

Item (2) achieves optimal seed length up to the lower-

order factor log(d log n). The field size improves on previous

constructions for d ≥ ω(log2 n). This item is obtained by

setting m = O(log n) and k = O(log n).

We also obtain pseudorandom generators with the same

seed length as previous constructions, but that only require

q ≥ O(d4), see Theorem 5. This improves on the Ω(d6)
field size of previous constructions. Further reducing the field

size will require a significant change in techniques: Most

or all generators for large-degree polynomials rely on Weil

bounds, cf. Fact 12 or [17, Page 92]; but such bounds are

only applicable when q > d4.

Proof overview: A central concept in our proof, which

was apparently not used before in the pseudorandomness

literature, is that of indecomposability.

Definition 2. A polynomial g over a field F is indecomposable

if it cannot be written as c ◦ h where c is a univariate
polynomial of degree ≥ 2 and both c and h are over F.

Let g be a polynomial we aim to fool. We begin by writing

g = c(h) where c is a univariate polynomial of maximal de-

gree. We observe that the polynomial h is indecomposable, for

else the degree of c is not maximal. A main technical contri-

bution (discussed more below) is a universal (i.e., independent

from g) construction of polynomials f1, f2, . . . , fn that (i)

are on few variables, (ii) have low degree, and (iii) preserve
indecomposability: if h(f1, f2, . . . , fn) is decomposable, then

so is h(x1, x2, . . . , xn). As observed above, the latter is not

decomposable; hence the former is not decomposable either.

We then prove (Lemma 9 in Section II) that the output distri-

bution of indecomposable polynomials is close to uniform.

This proof combines several results in algebraic geometry,

including Weil’s bound and results about reducibility of shifts

of indecomposable polynomials.

Putting the above together we conclude that the fi fool g
because

g(U) = c(h(U)) ≈ c(U)

≈ c(h(f1, f2, . . . , fn))(U) = g(f1, f2, . . . , fn)(U).

Hence we have reduced the problem of fooling g to that of

fooling g composed with the fi. The gain is that by (i) we have

reduced the number of variables. The main cost is an increase

in degree, but this increase is small by (ii). Overall we obtain

the following result, which is a main technical contribution of

this work.

Theorem 2. For every positive integers n, d, k and field Fq:
There is an explicit family of degree-k polynomials

f1, f2, . . . , fn over Fq in (d + 1)m variables such that for
any polynomial g over Fq of degree d in n variables the
statistical distance between g(U) and g(f1, f2, . . . , fn)(U) is
O(d2k2/

√
q), for any m and k as in Theorem 1.

If we plug uniform values for the variables of the fi we ob-

tain pseudorandom generators with seed length as in Theorem

1 except that the factor log(dk + dm) is replaced with log q.

This is sufficient to prove the theorem when q is polynomial in

dn. If q is larger, for example q ≥ 2d, it is not sufficient, and

we need to improve the dependence on q from multiplicative to

additive. To achieve this we combine Theorem 2 with another

pseudorandom generator which we construct (Theorem 5). The

latter generator combines Bogdanov’s template [10] discussed

earlier with some of our proof ideas. Compared with [10] and

subsequent works, this generator has two main differences.

First, we give a variant of Bogdanov’s reduction of pseudo-

random to hitting-set generators, again relying on preserving

indecomposability. This allows us to improve the dependence

on the field size. Note however that one can already obtain

non-trivial generators over fields of size O(d4) from Theorem

2 (suitably set k = O(1) and m = nΩ(1)). Second, we need

to hit polynomials whose degree is larger than the number of

variables, whereas in most previous work the degree is smaller.

We note that such a hitting set can be obtained by combining

[11], [13].

The construction of the fi and its analysis using invari-
ant theory: Let M1,M2, . . . be an enumeration of distinct

monomials of degree k in m variables (in some cases we

need some mild conditions on these monomials, discussed

below). We take � copies of the variables, and define fi :=

M
[1]
i +M

[2]
i +. . .+M

[�]
i where M

[j]
i is the monomial Mi where

the variables are taken from copy j. Hence the construction is

simple and very explicit.

The proof that the fi preserve indecomposability uses

invariant theory, apparently for the first time in this area,

and proceeds as follows. Consider the polynomial G :=
g(f1, f2, . . . , fn). First, note that G is invariant under permu-

tation of the copies of variables (simply because the fi are).

Now assume that G can be decomposed as G = c(H) for some
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univariate polynomial c. We show that H must be invariant as

well. Next, we show that the fi are a basis for the invariant

polynomials; this allows us to write H = h(f1, f2, . . . , fs) for

some low-degree polynomial h, where note a priori s could

be much larger than n. Hence we obtained

g(f1, f2, . . . , fn) = c(h(f1, f2, . . . , fs)).

Finally, we show that this implies s = n and

g(x1, x2, . . . , xn) = c(h(x1, x2, . . . , xn)) as desired.

Three results on preserving indecomposability: We give

three formal versions of the analysis in the previous paragraph.

The first version (Theorem 3 in Section I) has the easiest

proof, requires fields of characteristic > dk, and takes � > dk
copies of variables. This version suffices to obtain generators

with seed length Õ(d log2 n) + O(log q) over such fields,

where Õ(x) stands for x logO(1) x. Using the construction

recursively, one can improve the seed length to Õ(d log n) +
O(log q), thus matching Item (2) in Theorem 1 up to lower-

order factors for large characteristic, and in particular for

prime fields. However these ideas do not suffice to obtain the

optimal seed length in Item (1), for example. For this first

version we can take any distinct monomials. This version also

allows us to draw a close analogy with the Bogdanov-Viola

paradigm [1]: We note that one can replace the Mi with any

set of polynomials Ni of the same degree that fool degree-

one polynomials. To verify this we can write the Ni as linear

combinations of the Mi and use that the linear maps are full

rank since the Ni fool degree-one polynomials.

The second version (Theorem 4 in Section IV) has a slightly

more complicated proof, but requires only characteristic >
d and more importantly takes only � = d + 1 copies. This

essentially matches the number � = d of copies in [1], [8]. For

this we need a certain mild condition on the monomials. This

version suffices to prove Theorem 1 for fields of characteristic

> d, and in particular for prime fields.

The third version is omitted and is the most complicated, but

works over any characteristic, and again takes only � = d+1
copies. Here we need to avoid obvious counterexamples; for

example over F2 we cannot take M1 = x2 because g = x is

trivially indecomposable but g(f1) = (x[1])2 + (x[2])2 + · · ·+
(x[�])2 = (x[1]+x[2]+· · ·+x[�])2 is decomposable. It turns out

that it suffices to take any Mi that are indecomposable. This

version can be used to prove Theorem 2 as stated, for fields

of any characteristic. Besides this, the results in this section

allow us to preserve indecomposability over any field, even

small. The only restriction on the field size then comes from

Weil’s bound (cf. Fact 12).

Open problems: A natural goal is to reduce the field size

in Item (1) in Theorem 1 to O(d4). This would yield a single

generator that improves on all those in this paper. The current

bounds on the field size arise from applying Weil’s bound

to polynomials of degree dk rather than d. However, these

polynomials of degree dk have a special structure as they arise

from the composition of an arbitrary polynomial of degree d
with the MΣ’s. It is conceivable that Weil’s bound can be

improved for such composed polynomials, perhaps to obtain

bounds similar to those for degree-d polynomials. We raise

this as an open problem.

I. PRESERVING INDECOMPOSABILITY

In this section we give a first construction of polynomials

that preserve indecomposability. We state the main theorem

next after some notation. Then we proceed with the proof

which involves several intermediate claims.

Let Fq be a field of characteristic p and let R =
Fq[x1, x2, . . . , xm] be the polynomial ring in m variables. We

define R⊗� = Fq[{x[i]
j }] as the polynomial ring in the variables

x
[i]
j with 1 ≤ i ≤ � and 1 ≤ j ≤ m. We can arrange the � ·m

variables in a matrix

X =

⎛
⎜⎜⎜⎜⎝

x
[1]
1 x

[1]
2 · · · x

[1]
m

x
[2]
1 x

[2]
2 · · · x

[2]
m

...
...

. . .
...

x
[�]
1 x

[�]
2 · · · x

[�]
m

⎞
⎟⎟⎟⎟⎠

(1)

Definition 3. A monomial is a product of powers of vari-
ables (with leading coefficient 1). For a monomial M =
M(x1, x2, . . . , xm) ∈ R = Fq[x1, x2, . . . , xm] we define
M [i] = M(x

[i]
1 , x

[i]
2 , . . . , x

[i]
m) and MΣ =

∑�
i=1 M

[i].

Theorem 3. Suppose that M1,M2, . . . ,Mr ∈ R are dis-
tinct non-constant monomials of degree ≤ k, and let
g(x1, x2, . . . , xr) be a non-constant polynomial of degree d.
Let G := g(MΣ

1 ,MΣ
2 , . . . ,MΣ

r ) and assume that p ≥ dk + 1
and � ≥ max{5, dk + 1}. If G is decomposable then g is
decomposable.

We remark that � = d does not suffice for example for d = 1
and k = 2: take M1 = x2

1.

The rest of this section is devoted to proving the theorem.

We view the symmetric group S� of permutations on � ele-

ments as acting on R⊗� by σ(x
[i]
j ) = x

[σ(i)]
j for all i, j. So the

action of S� permutes the rows in X .

Definition 4. For a monomial M in R⊗�, the diversity of M
is the smallest number d such that the variables in M come
from d rows in X . For a nonzero polynomial f ∈ R⊗�, the
diversity div(f) is the largest diversity over all monomials
appearing in f .

For a subgroup G of S� and a polynomial g ∈ R⊗� we

say that g is G-invariant if σg = g for all σ ∈ G. Note that

MΣ is invariant under the action of S� and that div(MΣ) = 1
when M is not constant. In general we have the following

proposition.

Proposition 5. Suppose that f ∈ R⊗� is an S�-invariant
polynomial with div(f) = d and p > d. Then f can be written
as a polynomial of degree d in the MΣ’s.

Proof. The orbit sum of a monomial M := M
[1]
1 M

[2]
2 · · ·M [�]

�

where the Mi are in R is the sum of all monomials in the

S� orbit {M [π1]
1 M

[π2]
2 · · ·M [π�]

� : π ∈ S�} of M . We note

that any S�-invariant polynomial f can be written as a linear

combination of orbit sums of monomials. Using this fact we
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now prove the proposition by induction on d = div(f). If

d = 1 then the orbit sums above are orbit sums of monomials

that only involve one set of variables, so they are of the form

MΣ.

Now suppose d > 1. Without loss of generality, we may

assume that f does not have monomials of diversity < d. Con-

sider the orbit sum of a monomial M
[i1]
1 M

[i2]
2 · · ·M [id]

d where

M1,M2, . . . ,Md ∈ Fq[x1, x2, . . . , xm] are non-constant

monomials. If the Mi are all distinct, then this orbit sum can

be written as the sum
∑

i1,i2,...,id

M
[i1]
1 M

[i2]
2 · · ·M [id]

d (2)

over all (i1, i2, . . . , id) ∈ {1, 2, . . . , �}d with i1, i2, . . . , id
distinct.

If however some of the Mj’s coincide, then in the sum

(2) some of the monomials M
[i1]
1 M

[i2]
2 · · ·M [id]

d are summed

more than once. (For example, if d = � = 2 and M1 =

M2 = x1 then the orbit sum of M = M
[1]
1 M

[2]
2 has size 1,

whereas in the sum above the same monomial would appear

twice.) In the worst case, when all Mj’s are the same, the

same monomial is summed d! times. This is not a problem,

because the characteristic p of Fq is > d, so we can still write

the orbit sum as the sum (2) multiplied by a non-zero field

element.

So we can write f as a linear combination of sums (2) (for

various choices of the Mi). Consider one such sum S. Note

that the polynomial

S −MΣ
1 MΣ

2 · · ·MΣ
d

has diversity < d. By the induction hypothesis, S −
MΣ

1 MΣ
2 · · ·MΣ

d can be written as a polynomial of degree < d
in the MΣ’s. So f can be written as a polynomial of degree

d in the MΣ’s.

Let A� be the alternating subgroup of S�.

Lemma 6. If a polynomial f ∈ R⊗� is A�-invariant and
deg(f) ≤ �− 2 then f is S�-invariant.

Proof. First, assume that f is an A� orbit sum, i.e., there is

a monomial N such that f is the sum of all elements in the

set {σ · N | σ ∈ A�}. Because deg(N) ≤ � − 2, there exist

two rows in (1), say i and j, such that N does not contain

any variables from those rows. Then we have (i j) ·N = N ,

and since f was already A�-invariant we conclude that f is

S�-invariant.

If f is arbitrary, we use the general fact that for any group

G, if a polynomial is G-invariant, then f can be written as

the sum of orbit sums polynomials. Hence we can apply the

argument above to each orbit sum, and conclude the general

case as well.

Lemma 7. If f ∈ R⊗� is S�-invariant, deg(f) ≤ �− 1, � ≥ 5
and u ∈ R⊗� divides f , then u is S�-invariant.

Proof. We can factor f = f1f2 · · · fs where f is irre-

ducible. Factorization in the polynomial ring into irreducible

factor is unique up to permuting factors and multiplying

factors with nonzero constant scalars. From f = π(f) =
π(f1)π(f2) · · ·π(fs) follows that for every i there exists a

j and a nonzero constant c ∈ F
×
q = Fq − {0} such that

π(fi) = cfj . In other words π(Li) = Lj where Li is the

span of fi. Let L = {L1, L2, . . . , Ls}. Note that the set L
may have less than s elements, because some factors may be

the same up to a nonzero constant. Then S� acts on L . Let

Hi ⊆ S� be the stabilizer subgroup of Li, that is, π ∈ Hi if

and only if π(Li) = Li. By the orbit-stabilizer theorem, the

index |S�|/|Hi| of Hi in S� equals the size of the orbit of Li.

The latter is ≤ |L| ≤ s. Moreover, s ≤ deg(f) ≤ �−1, where

the second inequality is by assumption. Hence, the index of

Hi is < �. It is known that the only proper subgroup of S�

of index < � is A�, see e.g. [18, p. 84]. So it follows that

Hi = A� or S�. This proves that π(Li) = Li for all π ∈ A�.

We now argue that in fact even π(fi) = fi for all i and all

π ∈ A�. Fix i. From π(Li) = Li for all π ∈ A� we know that

for every π ∈ A� there exists a (unique) element χi(π) ∈ Fq−
{0} such that π(fi) = χi(π)fi. Notice that χi : A� → F

×
q is a

group homomorphism. Let K be its kernel. The kernel of any

group homomorphism is a normal subgroup, so K is a normal

subgroup of A�. On the other hand, A� is simple for � ≥ 5, that

is, it has no non-trivial normal subgroups. So either K = A�

or K = {1}. We can exclude the latter possibility because it

would imply that A� is commutative, which is not true. (We

would have π · π′ = χ−1
i χi(π · π′) = χ−1

i (χi(π) · χi(π
′)) =

χ−1
i (χi(π

′) · χi(π)) = χ−1
i χi(π

′ · π) = π′ · πusing that F×q is

commutative.) Hence K = A� and π(fi) = χi(π)fi = fi for

all π ∈ A�.

Therefore, f1, f2, . . . , fs are A�-invariant. If s = 1, then

ft = f is S�-invariant. If s > 1, then deg(fi) ≤ �− 2 for all

i, and fi is S�-invariant by lemma 6. Up to a constant, u is a

product of the fi’s, so u is S�-invariant.

Proposition 8. Suppose that M1,M2, . . . ,Mr ∈
Fq[x1, x2, . . . , xm] are distinct non-constant monomials,
g(x1, x2, . . . , xr) is a polynomial of degree d ≤ � and p > d.
If g(MΣ

1 ,MΣ
2 , . . . ,MΣ

r ) = 0, then g = 0.

Proof. Consider a monomial of maximal degree d in g, say

xi1xi2 · · ·xid with i1 ≤ i2 ≤ · · · ≤ id. Then the monomial

M
[1]
i1

M
[2]
i2
· · ·M [d]

id
appears in MΣ

i1
MΣ

i2
· · ·MΣ

id
. Here we use

the assumption on the characteristic, needed for example if

i1 = i2 = . . . = id. Also, if j1 ≤ j2 ≤ · · · ≤ jd and

(i1, i2, . . . , id) �= (j1, j2, . . . , jd), then M
[1]
i1

M
[2]
i2
· · ·M [d]

id
does

not appear in MΣ
j1
MΣ

j2
· · ·MΣ

jd
. Also, M

[1]
i1

M
[2]
i2
· · ·M [d]

id
does

not appear in MΣ
j1
MΣ

j2
· · ·MΣ

jd′
if d′ < d since the latter has

diversity ≤ d′ while the former has diversity d.

This shows that the monomial M
[1]
i1

M
[2]
i2
· · ·M [d]

id
appears in

g(MΣ
1 ,MΣ

2 , . . . ,MΣ
r ). In particular, g(MΣ

1 ,MΣ
2 , . . . ,MΣ

r ) �=
0.

We can now prove the main theorem of this section.

Proof of Theorem 3. Suppose that G can be decomposed as

G = c(H) for some H ∈ R⊗� and univariate polynomial
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c ∈ Fq[x] of degree e ≥ 1. Note that G has degree ≤ dk. Let

α ∈ Fq be a root of c(x). Then x − α divides c(x), and so

H−α divides c(H). Then H−α, and hence H , is S�-invariant

by Lemma 7, using that � ≥ dk+1. Note that if α ∈ Fq does

not lie in Fq , then we have to apply Lemma 7 after replacing

Fq with a finite field extension of Fq that contains α.

From the degree bounds on G = c(H) and c it follows

that H has degree ≤ dk/e. In particular, div(H) ≤ dk/e.

By Proposition 5 we can write H as a polynomial of degree

≤ dk/e in all MΣ’s, say H = h(MΣ
1 ,MΣ

2 , . . . ,MΣ
s ) for some

s. Note that s may be larger than r.

If we set u(x1, x2, . . . , xs) = g(x1, x2, . . . , xr) −
c(h(x1, x2, . . . , xs)), then we have

u(MΣ
1 ,MΣ

2 , . . . ,MΣ
s ) = 0.

Proposition 8 implies that u = 0. So g(x1, x2, . . . , xr) =
c(h(x1, x2, . . . , xs)). So h(x1, x2, . . . , xs) =
h(x1, x2, . . . , xr) only depends on x1, x2, . . . , xr and

the degree of h is ≤ d/e.

II. INDECOMPOSABILITY IMPLIES EQUIDISTRIBUTION

In this section we prove the following lemma.

Lemma 9. Let h be a polynomial of degree d in n variables
over Fq . If h is indecomposable then h(U) is O(d2/

√
q)-close

to uniform over Fq .

For the proof we need several facts from the algebraic-

geometry literature.

Fact 10. [19] Let h be a polynomial of degree d in n
variables over an algebraically-closed field K. Suppose that
h is indecomposable. Then the number of λ ∈ K such that
h− λ is reducible in K is at most d.

[19] generalizes several previous works; we refer to [19]

for the history of this type of results. Our polynomials are over

Fq which is not algebraically closed. However the following

fact allows us to bypass this apparent obstacle. If K is a field

the notation K denotes its algebraic closure.

Fact 11. [20, Theorem 4.2.] If a polynomial is indecompos-
able over Fq then it is also indecomposable over Fq .

Finally, we use the following version of Weil’s bound.

Fact 12. [10, Proposition 2.6] Let h be a non-constant
polynomial of degree d in n variables over Fq that cannot
be reduced in Fq . Then |P[h(U) = 0] − 1/q| ≤ O(d2q−3/2),
assuming q > 5d4.

Proof of Lemma 9. By Fact 11 h is also indecomposable over

Fq . By Fact 10, h − λ is not reducible in Fq except for at

most d values of λ ∈ Fq . For each value λ for which it is not

reducible, Fact 12 yields |P[h(U) = λ]− 1/q| ≤ O(d2q−3/2).
Note we can assume q > 5d4 for else the conclusion of

the lemma holds. For any other value of λ, by Schwartz-

Zippel, |P[h(U) = λ] − 1/q| ≤ d/q. Combining these facts,

the statistical distance between h(U) and uniform is at most

O(d2/
√
q) + d2/q = O(d2/

√
q).

III. TOY PSEUDORANDOM GENERATORS WITH WHAT WE

HAVE SO FAR

In this section we derive “toy” pseudorandom generators

with the results of the previous two sections, over fields of

characteristic > dk. Define fi := MΣ
i as in the introduction.

The generator simply picks �m uniform values for the vari-

ables of the fi and outputs (f1, f2, . . . , fn)(U). The analysis

goes as follows. Let g be a polynomial of degree d that we

aim to fool. Let c be a univariate polynomial of maximal

degree such that g(x1, x2, . . . , xn) = c(h(x1, x2, . . . , xn)). In

particular we have g(f1, f2, . . . , fn) = c(h(f1, f2, . . . , fn)).
Note that h has degree ≤ d and is indecomposable, for else the

degree of c is not maximal. By Theorem 3, h(f1, f2, . . . , fn)
is indecomposable as well. By Lemma 9, h(f1, f2, . . . , fn)(U)
is O(d2k2/

√
q)-close to uniform, and the same bound holds

for h(U).
Hence we obtained generators with seed length

O(�m log q) = O(dkm log q) and error O(dk)2/
√
q.

Here we just need
(
m+k
m

) ≥ n. For example, we can pick m
and k to be O(log n). This gives seed length O(d log2 n log q).
As mentioned earlier, one can improve the seed length to

O(d log n logO(1) log(dn)) by applying the construction

recursively.

IV. IMPROVING BOUNDS FOR INDECOMPOSABILITY

In this section we improve the bounds in Theorem 3 to get

the preservation of indecomposability for � ≥ d + 1 instead

of � ≥ dk + 1. The factor-k loss in the previous argument

arises when bounding the diversity of H by the degree of H ,

where the latter is a priori as large as dk/e, see the proof of

Theorem 3. In this section we consider a more constrained set

Q of monomials, defined shortly. Using this, we can recoup a

factor k when bounding the diversity of a polynomial in terms

of its degree, see Lemma 13.

We fix a positive integer k and let Q ⊆ R =
Fq[x1, x2, . . . , xm] be the subring spanned by all monomials

of the form xa1
1 xa2

2 · · ·xam
m ∈ R where a1+a2+· · ·+am−1 =

(k − 1)am. Note that the degree of a polynomial in Q is

kam which is always divisible by k. Let Q⊗� ⊂ R⊗� be the

subring spanned by all monomials M
[1]
1 M

[2]
2 · · ·M [�]

� where

M1,M2, . . . ,M� ∈ Q.

We modify Theorem 3 by only considering monomials MΣ

where M is a monomial in the subring Q ⊂ R rather than in

R. By doing so, as we mentioned, we improve the parameters

as follows.

Theorem 4. Suppose that M1,M2, . . . ,Mr ∈ Q are distinct
non-constant monomials of degree k, and let g(x1, x2, . . . , xr)
be a non-constant polynomial of degree d. Let G :=
g(MΣ

1 ,MΣ
2 , . . . ,MΣ

r ) and assume that p ≥ d + 1 and � ≥
max{5, d+1}. If G is decomposable then g is decomposable.

The rest of this section is devoted to the proof of this

theorem. The proof follows the same outline of the proof of

the corresponding Theorem 3 in Section I, but some of the

steps are more involved.
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First, as mentioned above, we give a tighter connection

between diversity and degree for polynomials in Q⊗�.

Lemma 13. If f ∈ Q⊗� has degree ≤ dk, then div(f) ≤ d.

Proof. The polynomial f is by definition a linear combination

of monomials of the form M
[1]
1 M

[2]
2 · · ·M [�]

� where Mi is a

monomial in Q of total degree ≤ dk. If Mi �= 1, then the

degree of Mi is at least k. So Mi �= 1 for at most d distinct

indices i. This proves that div(f) ≤ d.

We also modify Proposition 5 as follows.

Proposition 14. Suppose that f ∈ Q⊗� is an S�-invariant
polynomial with div(f) = d and p > d. Then f can be written
as a polynomial of degree d in the MΣ’s, where M ranges
over monomials in Q.

Proof. We follow the proof of Proposition 5 and note that

all the monomials that appear can be chosen in Q and Q⊗�

instead of R and R⊗� respectively.

One difficulty that we face when generalizing the other

statements in Section I such as Lemma 7 is that of arguing

that the polynomials we encounter lie in Q⊗� instead of

R⊗�. For this purpose it is convenient to introduce the ring

homomorphism

Φ : R⊗� → R⊗�[t[1], . . . , t[�], (t[1])−1, . . . , (t[�])−1]

with Φ(x
[i]
j ) = t[i]x

[i]
j for j < m, Φ(x

[i]
m) = (t[i])1−kx

[i]
m

and Φ(α) = α for α ∈ Fq . Note that the image of Φ is a

Laurent polynomial, that is, the exponents of the variables t[i]

may be negative. If we work over the algebraically closed

field Fq , then Φ corresponds to an action of the �-dimensional

torus group T = (F
×
q )

� on the ring R⊗�. This motivates the

terminology that follows.

A polynomial f ∈ R⊗� is T -invariant when Φ(f) = f ,

i.e., the variables t[i] cancel out. Note that if M ∈ Q then

M [i] is T -invariant. More generally, Q⊗� is the ring of all T -

invariants. A polynomial f ∈ R⊗� is called T -semi-invariant if

Φ(f) = (
∏�

i=1(t
[i])a

[i]

)f for some a = (a[1], a[2], . . . , a[�]) ∈
Z
�, called weight. The monomials in R⊗� are all T -semi-

invariant.

As in Lemma 7, we need to argue about factors of invariant

polynomials. We begin with the following lemma which will

help us argue that these factors lie in Q⊗� (as opposed to

R⊗�).

Lemma 15. Suppose that u, f ∈ R⊗� and u divides f . If f
is T -semi-invariant, then so is u.

We shall only use this for T -invariant f , but the proof is

the same.

Proof. Note that f is T -semi-invariant if and only if Φ(f),
as a Laurent polynomial in t[1], . . . , t[�], consists of a single

monomial. If f = uv then note Φ(f) = Φ(u)Φ(v). By

assumption, Φ(f) consists of a single monomial as a Laurent

polynomial. Then the same is also true for Φ(u) and Φ(v).

Here we are using the general fact that if, say, Φ(u) has

more than one term, then the product Φ(u)Φ(v) has more

than one term. To see this, consider the lexicographic order

on monomials, and note that the product of the smallest

monomial in Φ(u) with the smallest monomial in Φ(v) cannot

be obtained by multiplying any other two monomials, and the

same holds for the product of the largest monomials. Hence

the product has at least two monomials.

We modify Lemma 7 to the following statement:

Lemma 16. If f ∈ Q⊗� is S�-invariant, deg(f) ≤ k� − 1,
� ≥ 5 and u ∈ R⊗� divides f , then u lies in Q⊗� and is
S�-invariant.

Proof. We modify the proof of Lemma 7. We started with

a factorization f = f1f2 . . . fs where f1, f2, . . . , fs are ir-

reducible. Since f ∈ Q⊗� it is T -invariant, and therefore

T -semi-invariant. We defined Li = Fqfi and considered the

action of S� on L = {L1, L2, . . . , Ls}. As before Hi is the

stabilizer of Li. By Lemma 15, f1, f2, . . . , fs are also semi-

invariant. Let us fix some j, and let (a[1], a[2], . . . , a[�]) be the

weight of the semi-invariant fj .

We prove that a[i] ≥ 0 for all i. First recall that a monomial

in Q is of the form xa1
1 xa2

2 · · ·xam
m with a1+a2+ · · ·+am =

kam. This means that the total degree of a polynomial f ∈ Q
in the variables x1, x2, . . . , xm is exactly k times the degree

of f as a polynomial in the variable xm with coefficients

in Fq[x1, . . . , xm−1]. Similarly, if f ∈ Q⊗� then the total

degree deg(f) of f is k times the degree degm(f) of f in

the variables x
[1]
m , x

[2]
m , . . . , x

[�]
m . Therefore for f ∈ Q⊗� we

have degm(f) = deg(f)/k < �.
Now suppose towards a contradiction that a[i] < 0 for

some i. Then x
[i]
m must appear in fj , so degm(fj) ≥ 1.

The orbit of Lj has |S�|/|Hj | elements, which correspond

to as many irreducible factors of f that are distinct and

have degree ≥ 1 with respect to degm. This implies that

|S�|/|Hj | ≤ degm(f) < �. As in the proof of Lemma 7,

this implies that Hj = A� or Hj = S�.

For a permutation σ, σ(fj) is semi-invariant. Its weight is

σ(a) = (a[σ(1)], . . . , a[σ(�)]). For σ ∈ Hj , σ(fj) and fj are

the same up to a constant, so σ(a) = a for all σ ∈ Hj . If

Hj = S� then a[1] = a[2] = · · · = a[�] < 0. The same holds if

Hj = A� for � ≥ 3 as we can again map i to any other value

via σ ∈ A�. This implies that all the monomials in fj contain∏m
i=1 x

[i]
m and degm(fj) ≥ �, contradicting the bound above.

We proved that a[i] ≥ 0 for all i, so Φ(fj) lies in the poly-

nomial ring R⊗�[t[1], . . . , t[�]] for all j. From
∏s

j=1 Φ(fj) =

Φ(f) = f ∈ R⊗� it follows that Φ(fj) ∈ R⊗� for all j. This

implies that fj ∈ Q⊗� for all j.

There remains to argue that the fj are S�-invariant. As in

the proof of Lemma 7, σ(Li) = Li for all σ ∈ A� implies that

σ(fi) = fi for all σ ∈ A� . Hence, the fi are A�-invariant.

If s = 1, then f = f1 is S�-invariant. Otherwise,

degm(fj) ≤ � − 2. Since fj ∈ Q⊗� we get deg(fj) =
k degm(fj) ≤ (� − 2)k. By Lemma 13, div(fj) ≤ � − 2.

Using Lemma 6 we conclude that fj is S�-invariant.
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Proof of Theorem 4. Suppose that G can be decomposed as

G = c(H) for some H ∈ R⊗� and univariate polynomial

c ∈ Fq[x] of degree e ≥ 1. We claim that in fact H ∈
Q⊗�. To verify this, note that from G = c(H) it follows

Φ(G) = c(Φ(H)). Since Φ(G) is T -invariant, i.e., constant

in the variables t[1], t[2], . . . , t[�], so is Φ(H) and H ∈ Q⊗�.

Note that G has degree ≤ dk. Let α ∈ Fq be a root of

c(x). Then x − α divides c(x), and so H − α divides c(H).
Because deg(H − α) ≤ dk < k�, H − α lies in Q⊗� and is

S�-invariant by Lemma 16. (Possibly, we may have to replace

Fq by a finite field extension.) It follows that H ∈ Q⊗� and

is S�-invariant.

From the degree bounds on G = c(H) and c it fol-

lows that H has degree ≤ dk/e. By Lemma 13, we get

div(H) ≤ d/e < �. By Proposition 14 we can write

H as a polynomial of degree ≤ d/e in all MΣ’s with

M ∈ Q, say H = h(MΣ
1 ,MΣ

2 , . . . ,MΣ
r , . . . ,MΣ

s ). If we set

u(x1, x2, . . . , xs) = g(x1, x2, . . . , x�) − c(h(x1, x2, . . . , xs)),
then we have

u(MΣ
1 ,MΣ

2 , . . . ,MΣ
s ) = 0.

and the degree of u is ≤ d. Proposition 8 implies that

u = 0. So g(x1, x2, . . . , xr) = c(h(x1, x2, . . . , xs)). So

h(x1, x2, . . . , xs) = h(x1, x2, . . . , xr) only depends on

x1, x2, . . . , xr and the degree of h is ≤ d/e.

V. BOGDANOV-STYLE GENERATORS

In this section we prove the following theorem.

Theorem 5. There are explicit pseudorandom generators that
fool with error ε degree-d polynomials in n variables over Fq ,
provided q ≥ O(d4/ε2), with seed length either

(1) O(n log(d+ n) + log q) or
(2) O(d4 log n+ log q).

First we refine Bogdanov’s reduction of pseudorandom gen-

erators to hitting-set generators. An explicit map H : S → F
n
q

is a δ-hitting-set generator for degree-d polynomials in n
variables over Fq if for any such polynomial f , if f �= 0
then P[f(H(U)) = 0] ≤ δ. The seed length of H is log2 |S|.

We obtain the following refinement of Bogdanov’s reduc-

tion:

Lemma 17. Suppose there exists a δ-hitting-set generator with
seed length s for polynomials of degree 3d4 in 2n variables
over Fq . Then there exists a pseudorandom generator for
polynomials of degree d in n variables over Fq with seed
length 2s+ 2 log q and error O(δ + d2/

√
q).

[10, Theorem 3.1] proves the same but with error O(
√
δd+

d2/
√
q+d6/q). To prove Lemma 17 first we use the following

result to relate indecomposability and irreducibility.

Fact 18. [21, Lemma 7] Let f ∈ F[x1, x2, . . . , xn] be a
non-constant polynomial. Then f is indecomposable over F

iff f − y is irreducible in F(y)[x1, x2, . . . , xn].

Here F(y) is the algebraic closure of the function field F(y),
where y is a variable.

We also need the following fact, mentioned already in [10]

when E = F.

Fact 19. Let F ⊆ E be a field extension. Let H be a δ-hitting-
set generator for degree-d polynomials over F. Then H is also
a δ-hitting-set generator for polynomials over E.

This fact follows because E is a vector space over F.

Proof of Lemma 17. Let g be a polynomial that we aim to

fool. As in Section III, write g = c(h) where c is a univariate

polynomial of maximal degree, and h is indecomposable. It

suffices to preserve the output distribution of h, which by

Lemma 9 is close to uniform. We relate indecomposability

to irreducibility via Fact 18, inspired by the proof of Theorem

8 in [21], then reason as in [10], using Theorem 5 in [15].

By Fact 11, h is indecomposable over Fq as well. Hence

we can apply Fact 18 to conclude that h− y is irreducible in

E[x1, x2, . . . , xn] where E := Fq(y). We now use Theorem

5 in [15] over the field E. For v1..n ∈ E
n and w2..n, z2..n ∈

E
n−1 define the following bivariate restriction of h:

h|v,w,z[s, t] := h(s+ v1, w2s+ z2t+ v2 . . . , wns+ znt+ vn).

Theorem 5 in [15] shows that h|v,w,z is absolutely irreducible

except when v, w are zeroes of a polynomial of degree O(d2)
over E, or z is the zero of a polynomial of degree O(d4) over

E (where the latter polynomial may depend on the first).

For our generator, we pick (v, w) with a δ-hitting-set

generator for polynomials of degree O(d2) and z with an in-

dependent δ-hitting-set generator with error ε for polynomials

of degree O(d4). For the variables s and t we plug uniform

values in Fq .

By Fact 19, these hitting-set generators are also δ-hitting-

set generators polynomials over E. Hence, h|v,w,z is absolutely

irreducible over E[s, t] with probability ≥ 1−O(δ). Then from

Fact 18 we obtain that h|v,w,z is indecomposable with at least

the same probability over the choice of v, w, z from the hitting-

set generators. Whenever it is indecomposable, by Lemma 9

its output distribution is O(d2)/
√
q-close to uniform.

To prove Theorem 5 there remains to construct δ-hitting-set

generators. Such for polynomials of degree d in n variables are

known with optimal seed length O(d log n+log 1/δ), provided

q ≥ O(d/δ) [13]. In particular, for polynomials of degree d4

in O(n) variables we can set δ := εd2/
√
q and have seed

length O(d4 log n + log q), provided q ≥ O(d4/(εd2/
√
q)).

The last provision is equivalent to q ≥ O(d4/ε2), which we

can always assume for else the theorem is trivial. This gives

Item (2) in Theorem 5.

Over fields of characteristic ≥ O(d2) the d4 factor can be

improved to d2 using Corollary 8 in [16] – and that is the

best possible, see Corollary 7 and the surrounding discussion

in the same paper.

For Item (1) in Theorem 5 we need a different hitting-set

generator, stated next.

Lemma 20. [Implicit in [11], [13]] There is an explicit δ-
hitting-set generator with seed length O(n log(n+d)+log 1/δ)
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for polynomials of degree d in n variables over Fq , provided
q ≥ O(d/δ).

This should be compared to the Schwartz-Zippel lemma,

which yields a δ-hitting-set generator with seed length

n log(d/δ) provided q ≥ d/δ. As the above lemma is not

stated in those works we quickly sketch how it follows from

[11], [13]. Lu [11] (Theorem 1) gives a δ-hitting-set generator

for polynomials with s terms with seed length O(log(sd/δ))
provided q ≥ d1.01/δ. (Lu’s proof focuses on constant δ,

but as noted there and in [13] one can also obtain the

stated parameters.) A degree-d polynomial in n variables

has s ≤ (
n+d
n

)
monomials. Hence we obtain seed length

O(n log(n + d) + log 1/δ). Guruswami and Xing [13] use

multiplication-friendly codes to bring down the bound on the

field size to q ≥ O(d/δ).
To prove Item (1) in Theorem 5, use the δ-hitting-set

generator in Lemma 20 for polynomials of degree d4 in O(n)
variables, setting δ := εd2/

√
q.

VI. PROOF OF MAIN RESULTS FOR FIELDS OF

CHARACTERISTIC > d

In this section we prove our main results, Theorem 1 and

Theorem 2, in the case of fields of characteristic > d (for

example, prime fields).

Proof of Theorem 2. Let Q and M1,M2, . . . be as in Theorem

4. The number of distinct monomials in Q is at least the

number of positive integers a1, a2, . . . , am−1 with sum equal

to k− 1 (corresponding to the setting am = 1 in Section IV).

This number is
(
m−1+k−1

m−1

)
, which is ≥ n by assumption.

Define fi := MΣ
i . The analysis is the same as in Section

III.

Proof of Theorem 1. From Theorem 2 we reduce our task to

that of fooling polynomials with degree d′ := dk in n′ :=
�m = (d + 1)m variables, up to an error O(d′2/

√
q). This

error is ≤ ε by our assumption that q ≥ O(dk)4/ε2 .

Item (1) in Theorem 5 shows how to fool such polynomials

with seed length O(n′ log(d′ + n′) + log q) and error β, pro-

vided q ≥ O(d′4/β2). This allows us to set β := O(d′2/
√
q)

and the provision is true. Again by our assumption that

q ≥ O(dk)4/ε2, we have β = O(ε). Hence the combined

error from the two steps is O(ε). The final seed length is

O(dm log(dk + dm) + log q), as desired.
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